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1 . INTRODUCTION

1 . 1 About This Manual

iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty
propagation analysis.  It is based on the TOUGH2 simulator for nonisothermal multiphase
flow in porous and fractured media [Pruess, 1987, 1991a].

The key to a successful application of iTOUGH2 is (1) a good understanding of multi-
phase flow processes, (2) the ability to conceptualize the given flow and transport problem
and to develop a corresponding TOUGH2 model, (3) detailed knowledge about the data used
for calibration, (4) an understanding of parameter estimation theory and the correct interpre-
tation of inverse modeling results, and (5) proficiency in using iTOUGH2 options.  This
report primarily addresses Issue (4), through the introduction of inverse modeling concepts
for applications in multiphase flow and transport simulations.  While inverse modeling can be
discussed in the jargon of applied mathematics and mathematical statistics, this manual is
tailored to the needs of engineers and scientists who are interested in calibrating TOUGH2
models against observed data.  It describes the inverse modeling framework and provides the
theoretical background for the methodologies employed by iTOUGH2.  Furthermore, it
discusses the architecture of iTOUGH2 and contains instructions for code installation and
execution.  This manual supplements the “iTOUGH2 Command Reference” [Finsterle,
1999b], which explains the syntax of all iTOUGH2 commands (Issue 5), and the report
“iTOUGH2 Sample Problems” [Finsterle, 1999c], which contains a collection of illustrative
iTOUGH2 applications.  It is assumed that the reader is familiar with the workings of
TOUGH2 (Issue 2).

The report is organized as follows.  After an introductory discussion of inverse modeling
issues (Chapter 1), each element involved in automatic model calibration is described in detail
in Chapter 2.  These elements include the parameter vector, the vector of observable vari-
ables, the stochastic model, the objective function, the minimization algorithm, convergence
criteria, the residual and error analyses, and uncertainty propagation analysis.  Each element
is discussed from a theoretical viewpoint, and reference to the corresponding iTOUGH2 input
and output will be made.  A line-by-line discussion of a typical iTOUGH2 output file is given
in Chapter 3.  Chapters 4 and 5 contain information about code architecture as well as
instructions for installing and running iTOUGH2.
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1 . 2 Motivation and Scope

Predicting multiphase fluid and heat flow in the subsurface by means of numerical simu-
lation involves the following steps:

1. Developing a conceptual model of the system and creating a numerical model;
2. Assigning values to the numerical model input parameters;
3. Predicting the system state by running the simulator;
4. Interpreting the results and assessing the uncertainty of the predictions.

The first step is the most difficult and also most important task.  The conceptual model
developed for the system to be studied provides the basis for all subsequent steps.  Errors in
the conceptual model usually have the largest impact on the model predictions.  In multiphase
flow modeling, the second step (i.e., assigning parameter values) is likely to be tedious and
challenging because of the relatively large number of parameters that need to be specified.
Moreover, the physical interpretation of these parameters is often ambiguous, and they are
difficult or even impossible to measure directly in the laboratory or the field.

Parameters can be estimated by automatically calibrating the multiphase flow model
against measured data of the system response.  Inferring model-related parameters from
observations by means of a process model is termed inverse modeling.  As elaborated in
Section 1.4, iTOUGH2 supports parameter estimation, sensitivity analysis, and uncertainty
propagation analysis.  It contributes to conceptual and numerical model development only in
the sense that alternative model designs can be tested against one another in their ability to
explain observed data.  A failure to match certain data may point towards aspects of the
model that need to be refined.
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1 . 3 General Remarks About Inverse Modeling

Parameter estimation, history matching, model calibration, and inverse modeling are
terms describing essentially the same technique with a slightly different objective in mind.
The ultimate goal is to assess the best model and its parameters for predicting the behavior of
a dynamic flow system.  The reliability of these predictions depends on the appropriateness
of the conceptual model and the model parameters.  Note that it is the intended use of the
model that determines the required degree of model sophistication, as well as the level of
accuracy with which the parameters are to be estimated.  In this overall scheme, parameter
estimation as supported by iTOUGH2 is only one, albeit important step in the process of
model development.

Inverse modeling consists of estimating model parameters from measurements of the
system response made at discrete points in space and time.  Automatic model calibration can
be formulated as an optimization problem, which has to be solved in the presence of uncer-
tainty because the available observations are incomplete and exhibit random measurement
errors.  The parameters to be estimated are selected coefficients in the governing flow equa-
tions.  They may include hydrogeologic and thermophysical properties, initial and boundary
conditions, and parameterized aspects of the conceptual model.  The interpretation of these
parameters depends on the model structure and the overall purpose of the specific model.  In
this sense, the parameters are strictly to be seen as model parameters (or model-related
parameters) rather than parameters of the geologic formation (or aquifer parameters).
Estimating parameter values from measurements relates the real multiphase flow system to its
idealized representation.

Inverse modeling involves several interacting steps.  Starting from a conceptual model of
the physical system, the results of parameter estimation may indicate that the underlying
model structure has to be modified.  This process of iteratively updating the conceptual model
and its parameters is sometimes referred to as model identification.  iTOUGH2 focuses on the
more narrow aspect of inverse modeling, namely parameter estimation by automatic model
calibration.  Nevertheless, the optimality criteria evaluated by iTOUGH2 make a valuable
contribution towards the solution of the model identification problem.
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1 . 4 iTOUGH2 Application Modes

iTOUGH2 is a computer program that provides inverse modeling capabilities for the
TOUGH2 code.  TOUGH2 [Pruess, 1987, 1991a] is a numerical simulator for multidimen-
sional, nonisothermal flows of multiphase, multicomponent fluids in porous and fractured
media.  While the main purpose of iTOUGH2 is to estimate model-related parameters by
automatically calibrating TOUGH2 models to laboratory or field data, the information
obtained by evaluating the sensitivity of the calculated system response with respect to certain
input parameters can also be used to study the appropriateness of a proposed experimental
design and to analyze the uncertainty of model predictions.

iTOUGH2 supports all three application modes, i.e., sensitivity analysis, parameter
estimation, and uncertainty propagation analysis.

(1) Sensitivity Analysis
The sensitivity of TOUGH2 output variables with respect to TOUGH2 input parameters
is numerically evaluated by iTOUGH2.  The resulting Jacobian matrix is rescaled to
make the sensitivity coefficients comparable with each other.  Summary sensitivity
measures are calculated to identify the most sensitive parameters as well as the model
output most affected by the selected parameters.  From an inverse perspective, these
values show the information content of individual data points, data sets, and observa-
tion types.  Furthermore, correlation coefficients between the parameters are calculated,
which can be used to detect parameter combinations that lead to a similar or very differ-
ent system behavior.

(2) Parameter Estimation
iTOUGH2 solves the inverse problem for determining TOUGH2 input parameters based
on any type of data for which a corresponding TOUGH2 output variable can be calcu-
lated.  Parameters are estimated by automatically matching the calculated to the observed
system response.  A number of different objective functions and minimization algo-
rithms are available.  An extensive residual and error analysis is performed.

(3) Uncertainty Propagation Analysis
The impact of parameter uncertainties on model predictions can be studied by means of
linear error propagation analysis or Monte Carlo simulations.

All three application modes are of practical significance.  The sensitivity analysis supplies
the measures needed for optimizing the design of a laboratory experiment or field test.
Parameter estimation by inverse modeling overcomes the labor-intensive tedium of trial-and-
error model calibration.  More important, the error analysis provides insight into the uncer-
tainty of the estimated parameters, and reveals parameter correlations.  Predictability can be
improved when relying on effective, model-related parameters estimated by inverse model-
ing.  The quality of these predictions can be assessed, taking into account the uncertainty of
the input parameters.
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1 . 5 Inverse Modeling Procedure

iTOUGH2 estimates elements of a parameter vector p based on measured data of the
system response, which are summarized in vector z *.  The parameters are related to the data
by minimizing a measure of misfit, the objective function S , which depends on the residual
vector r  and a weighting matrix Czz

−1
.  The uncertainty of the estimated parameters, i.e., the

covariance matrix Cpp , is also calculated, along with the uncertainty of the model predic-
tions.

An overview of the inverse modeling concept as implemented in iTOUGH2 is given in
this section, followed by a detailed discussion of each element.  The major steps are visual-
ized in the flow chart of Figure 1.5.1, and are summarized in Table 1.5.1.

true
system

response

measured
system

response
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calculated
system

response

minimization
algorithm

stopping
criteria
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Figure 1.5.1.  Inverse modeling flow chart.
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Table 1.5.1.  Inverse Modeling Procedure: Major Steps

Step Description Issue

1 Development of a numerical model, representing the
hydrogeological system under test conditions.

Model conceptualization

2 Selection of parameters to be estimated. Parameter selection

3 Selection of initial parameter values. Prior information/initial guess

4 Selection of data; identification of points in space and
time for calibration.

Calibration points

5 Assignment of weights to each calibration point. Stochastic model

6 Calculation of system state. Forward simulation

7 Comparison of calculated and observed system state. Objective function

8 Updating parameters in order to decrease the
objective function.

Minimization algorithm

9 Iteration of Steps 6 through 8 until no further
improvement of the fit can be obtained.

Convergence criteria

10 Analysis of residuals and estimation uncertainties. Residual and error analyses

The key elements as listed in Table 1.5.1 can be described as follows:

(1) Inverse modeling starts with the formulation of the so-called forward or direct problem.
A model must be developed that is capable of simulating the general features of the
system behavior under measurement conditions.  This step involves the mathematical
and numerical description of the relevant physical processes, the definition of model
geometry, the assignment of initial and boundary conditions, the discretization in space
and time, the selection of zones over which the model parameters are believed to be
constant, etc.  All the parameters that are not subject to the estimation process are then
fixed at their best known values.  It is important to realize that the fixed parameters are
part of the model structure to which the solution of the inverse problem refers.  The
forward problem is solved by the TOUGH2 simulator.

(2) The next step is to define a vector p̃ of length n  containing the parameters to be
estimated by inverse modeling.  Since the true parameters cannot be known, we replace
them with the corresponding model parameters p.  If performing uncertainty propaga-
tion analyses, p holds the parameters considered uncertain.  The parameters must be
TOUGH2 input parameters, and may include hydrogeologic characteristics, thermal
properties, initial and boundary conditions, as well as all aspects of the model that can
be parameterized.  An element of p may represent a single TOUGH2 input parameter,
multiple TOUGH2 input parameters, or a function of TOUGH2 input parameters.
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Furthermore, the parameter may be subjected to a transformation (e.g., taking its loga-
rithm) to make the inverse problem more linear or to change the distributional assump-
tion about the parameter.

(3) An initial guess has to be assigned to each element of p.  The vector holding the initial
guesses is denoted p0 .  Note that p0  affects the initial sensitivity coefficients and the
efficiency of the minimization algorithm.  Multiple inversions with different initial
guesses should be performed to detect potential local minima.  While often identical, the
vector of initial guesses, p0 , must be distinguished from the prior information vector,
p *, which holds independently measured or estimated parameter values.  These
measured parameters can be used to constrain or regularize the inverse problem.  Prior
parameter information must be appropriately weighted (see discussion of matrix Czz
below) to be accounted for in the inversion.

(4) Information about the model parameters is drawn from measurements of the system
state.  The availability of sufficient, sensitive data of high quality is the key requirement
for reliably estimating model parameters.  The measured and calculated system response
must correspond in terms of character, location, time, and scale.  Model output and
measured data are compared only at discrete points in space and time, the so-called
calibration points.  Vector z̃  of length m  holds the true, unknown, observable variables
at all measurement locations and all calibration times.  The vector holding the data
measured at or interpolated to the calibration points is denoted by z *:

  z *
T = [p1*,K, pn*, zn+1*,K, zm*] (1.5.1)

The corresponding model output, which is a function of space, time, and the model
parameters p, are summarized in vector z:

z(p)
T = [p1,K, pn, zn+1,K, zm] (1.5.2)

Note that if prior information about the parameters is available, then the first n  elements
of z * are the measured parameter values, i.e.,   zi* = pi * (i = 1,K,n), and the estimate
p is considered to be the corresponding model output.

The differences between the measured and calculated system response at the calibration
points are summarized in the residual vector r  of length m  with elements

 ri = zi * −zi i = 1,K,m (1.5.3)

(5) The observation vector includes data that are of different type, magnitude, and accu-
racy.  This requires that each residual be appropriately weighted before an aggregate
measure of misfit can be calculated.  As will be discussed in Section 2.5.3, it is reason-
able to use the inverse of the measurement covariance matrix Czz  as the weighting
matrix, i.e., the expected variability of the final residuals has to be assessed based on
the size of the measurement errors as well as the random modeling errors.



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 8 INTRODUCTION

(6) A TOUGH2 simulation is performed with the current parameter vector p to obtain the
elements of vector z(p).  The simulation will be repeated with updated parameters as
proposed by the minimization algorithm (see Steps 8 and 9).

(7) The calculated and measured system response is compared by calculating an aggregate
measure of misfit, which is termed objective function, S .  The objective function is
usually some norm of the weighted residuals.  If a distributional assumption about the
residuals is made, the objective function can be derived from maximum likelihood
considerations.  The weighted least-squares objective function is the most widely used
misfit criterion.  iTOUGH2 offers additional objective functions to increase the robust-
ness of an inversion.  The objective function is discussed in detail in Section 2.6.

(8) The purpose of the minimization algorithm is to find the minimum of the objective
function by iteratively updating the model parameters.  Since the model output z(p)
depends on the parameters to be estimated, the fit can be improved by changing the
elements of parameter vector p.  Consequently, the search for the minimum takes place
in the n -dimensional parameter space.  A number of strategies exist to find parameter
combinations that iteratively yield smaller values of the objective function; they will be
discussed in Section 2.7.

(9) Once no further decrease in the objective function can be achieved, the iterative mini-
mization procedure is terminated.  Convergence criteria used in iTOUGH2 are discussed
in Section 2.7.8.  Since the objective function is a global measure of the misfit between
the data and the corresponding model output, the parameter vector p that minimizes S
is considered the best-estimate parameter set.

(10) One of the key advantages of a formalized approach to parameter estimation is the
possibility to assess the goodness-of-fit, the estimation error, and the uncertainty of the
model predictions.  Note that if the data are not properly reproduced by the model, i.e.,
if the final residuals are large or exhibit systematic errors, the resulting parameter set is
likely to be inadequate or highly biased.  Furthermore, a good match does not imply
that the estimates are reasonable.  They may be highly uncertain due to high parameter
correlations.  The residual, error, and uncertainty propagation analyses are discussed in
Section 2.8.
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1 . 6 Introductory Example

The process of parameter estimation by automatic model calibration is illustrated in the
following example, which is described in detail in Finsterle and Persoff [1997].  The example
is also part of the collection of iTOUGH2 sample problems [Finsterle, 1999c; Problem 2].

A laboratory experiment was designed to estimate hydrogeologic parameters of very tight
rock samples.  A schematic of the experimental apparatus is shown in Figure 1.6.1.  A rock
sample is dried and placed in a sample holder, which is attached to two relatively small gas
reservoirs.  To conduct a test, the upstream reservoir is rapidly pressurized using nitrogen
gas to a value about 300 kPa above the initial pressure of the system.  Gas starts to flow
through the sample, and the change of pressure with time is monitored in both reservoirs.

N2 calib.
gauge

Whitey ball valve
pressure transducer

pup

relief
valve

manual
vent

pdo

∆p

Figure 1.6.1.  Schematic of gas-pressure-pulse-decay apparatus.

The steps listed in Table 1.5.1 and discussed in general terms in the previous section are
followed here for the specific example.

(1) As part of the model conceptualization, the relevant physical processes have to be iden-
tified, mathematically described, and implemented into the numerical simulator.  In this
example, it is sufficient to consider single-phase gas flow.   In porous media with very
low permeability and porosity, the mass flux F [kg s-1 m-2] of gas may be enhanced as
a result of slip flow known as the Klinkenberg effect.
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F = −k 1 + b
p







ρ
µ ∇p (1.6.1)

Here, k  is the absolute permeability [m2], ρ  is the density [kg m-3], µ  is the dynamic
viscosity [Pa s], and p  is the gas pressure [Pa].  The term in parentheses accounts for
enhanced gas slip flow, which occurs when the mean free path of the molecules is large
relative to the characteristic dimension of the pores.  Slip flow is important at low
pressures and in small pores, when a significant fraction of molecular collisions is with
the pore wall rather than with other gas molecules.  In Equation (1.6.1), b  [Pa] is the
Klinkenberg slip factor, which is a characteristic of both the geometry of the pore space
and the thermophysical properties of the gas.  It is directly proportional to the mean free
path of the molecules [Klinkenberg, 1941].  This flow equation and the appropriate
equations-of-state enter the mass- and energy-balance equations solved by TOUGH2.
Furthermore, the gas reservoirs and the core are discretized as a one-dimensional flow
problem, and the initial pressure in the model is set to the first measured pressure value.

(2) The parameters to be estimated are the porosity φ , the absolute permeability k  [m2],
and the Klinkenberg factor b  [Pa].  Since both k  and b  are expected to vary over many
orders of magnitude, we will estimate the logarithm of these two parameters.  Further-
more, logarithmic transformation makes the inverse problem more linear, and prevents
the parameters from becoming negative.  The parameter vector therefore is of length
n = 3 and has the elements pT = [φ , log(k), log(b)].

(3) The initial parameter values are chosen to be φ = 0.015, log(k) = −19.0 , and
log(b) = 7.0, defining the elements of vector p0 .  These initial values are guesses that
are not weighted as prior information.  In this example, the inversion does not depend
on the initial parameter set.

(4) Observations available for model calibration are the pressure data in the upstream and
downstream gas reservoir.  It is obvious from Equation (1.6.1) that the absolute perme-
ability and the Klinkenberg factor are strongly correlated if the average pressure in the
sample remains constant.  Therefore, three experiments performed on the same core but
at three different pressure levels are inverted jointly to allow for an independent estima-
tion of k  and b  (more details can be found in Finsterle and Persoff [1997]).  We select
30 calibration points in time, logarithmically spaced between 100 and 68,600 seconds.
Note that significantly more data points were measured through time, but calibration
will occur only against interpolated pressures observed in the two reservoirs during
each of the three experiments at 30 selected points in time.  The total number of calibra-
tion points is therefore m = mexperiments ⋅ mreservoirs ⋅ mtimes = 3 × 2 × 30 = 180.

(5) We assume that the measurement errors of the pressure data are uncorrelated and on the
order of σzi

= σz = 1000 Pa,  i = n + 1,K,m.  The covariance matrix Czz  is therefore a
m × m  matrix with σz

2
 on the diagonal (with the exception of the first three diagonal

elements, which are zero to avoid inclusion of prior information about the parameters)
and zeroes elsewhere.
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(6) The experiment is simulated using the forward model TOUGH2.  The initial pressures
in the upstream reservoirs of the three experiments are set to about 300 kPa above the
respective initial pressures in the core.  The dash-dotted lines in Figure 1.6.2 show the
pressure in the upstream and downstream reservoirs through time as calculated with the
initial parameter set p0 .

(7) The difference between the model calculation and the data at the calibration points is
measured by the objective function.  The standard least-squares objective function
chosen here is the sum of the squared weighted residuals, leading to maximum-likeli-
hood estimates if the residuals are normally distributed:

S = r
T
Czz

−1
r = (zi * −zi)

2

σzi

2
i=1

m

∑ (1.6.2)

(8) The Levenberg-Marquardt minimization algorithm described in Section 2.7.4 is used to
propose new parameter sets pk  that iteratively reduce the value of the objective func-
tion.  The Levenberg-Marquardt algorithm requires evaluating the sensitivity of the
calculated pressures zj  with respect to the parameters pi , providing the search direction
in the n -dimensional parameter space.

(9) If a certain convergence criterion is met (here, the maximum number of unsuccessful
uphill steps was reached), go to Step 10, otherwise repeat Steps 6 through 8 with the
updated parameter vector pk .  The fit obtained after 7 iterations is shown in Figure
1.6.2 (solid lines), matching the observed data (symbols) reasonably well.

(10) The error analysis reveals, however, that the standard mean error is larger than the
expected mean residual of 1000 Pa.  The reason for the unsatisfactory match is a
systematic error (a leak in the measuring apparatus and inappropriate initial conditions),
which becomes apparent when examining the residual plot shown in Figure 1.6.3.
Given this result, the estimated parameters are likely to be biased despite a relatively
small estimation uncertainty.  These difficulties are resolved by parameterization of the
systematic errors as discussed in Finsterle and Persoff [1997].

The example illustrates the process and main elements of inverse modeling, which will be
discussed in detail in the following chapter.  The example also demonstrates the importance
of a formalized approach and the error analysis, which identified weaknesses in the data and
the conceptual model.
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Figure 1.6.2.  Comparison between measure and calculated pressure transients with the
initial and final parameter sets.
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Figure 1.6.3.  Residuals as a function of time, showing systematic overprediction of
pressures at late times for Experiments 2 and 3.
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1 . 7 Typing Conventions and Variable Definitions

Table 1.7.1 summarizes the main variables.  The typing conventions are as follows:

• Scalars are represented by plain characters, e.g., krl .
• Vectors are lower-case bold characters, e.g., p.
• Matrices are upper-case bold characters, e.g., J , Czz .
• Elements of vectors and matrices are indexed scalars, e.g., Jij , zi .
• Measured quantities are indicated with an asterisks (*), e.g., zi *; the true (usually

unknown) values are indicated by a tilde, e.g., z̃i ; the calculated or estimated variables
are shown as plain characters, e.g., zi ; best estimates are indicated with a carat, e.g., p̂.

Table 1.7.1.  Main Variables and Their Definitions
Variable Dimension Definition Equation

α

α

scalar

scalar

Level of significance; (1 − α ) is confidence level

Perturbation factor for calculating derivatives

-

-

cij scalar Covariance of estimated parameter

(off-diagonal element of Cpp )

2.8.4.2

Γi scalar Ratio of conditional and marginal standard deviation 2.8.4.4
Cpp n × n Covariance matrix of estimated parameters 2.8.4.2

Czz m × m A priori covariance matrix of measurement errors 2.5.3.1
Cẑẑ m × m A posteriori covariance matrix of predictions 2.8.5.7

H n × n Hessian matrix 2.7.2.7

J m × n Jacobian matrix with sensitivity coefficients 2.7.2.4

K

K

scalar

scalar

Maximum number of iTOUGH2 iterations

Number of observation types in an inversion

-

-

k scalar iTOUGH2 iteration index -

λ scalar Levenberg parameter 2.7.4.1

m scalar Number of calibration points 2.3.3

ν scalar Marquardt parameter -

n scalar Number of parameters -

p n Parameter vector -

p * n Prior information -
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pk n Parameter vector at iteration k 2.7.1.1

p̂ n Best-estimate parameter set

r m Residual 2.4.1

rij scalar Correlation coefficient 2.8.4.3

σi
2

scalar A priori error variance (measurement error,

diagonal element of Czz)

2.5.3.1

σpi

2
scalar A posteriori  error variance of estimated parameter

(diagonal element of Cpp )

2.8.4.2

σ0
2

scalar Dimensionless a priori error variance 2.5.3.2
s0

2
scalar Dimensionless posteriori or estimated error variance 2.8.3.1

S scalar Objective function 2.6.4.4

Vzz
−1

m × m Weighting matrix 2.5.3.2

w m Normalized residual (a posteriori) 2.8.5.10

y

y

m

m

Normalized residual (a priori)

Local reliability

2.6.5.2

2.8.5.9

z m Observable variables 2.3.2

z * m Measurement vector, includes prior information 2.3.1

z̃ m True system response -

ẑ m Predicted system response -
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2 . INVERSE MODELING THEORY

2 . 1 Introduction

The basic concept of estimating parameters by matching the model to observations dates
back to Carl Friedrich Gauss, who introduced the method of least squares for the analysis of
astronomical and geodetic data during the last decade of the eighteenth century [Gauss,
1821].  Gauss made contributions to all aspects of parameter estimation, providing a detailed
discussion of measurement errors, a probabilistic justification of the least-squares objective
function, advances in computational methods (Gaussian elimination), and an analysis of
estimation uncertainty.  While the algorithms for identifying the minimum of the objective
function have been continually refined, the basic idea as well as the difficulties associated
with solving the inverse problem remain essentially the same.

The theory on inverse modeling is described in a variety of textbooks for applied
mathematics and mathematical statistics (see, for example, Beck and Arnold [1977], Bickel
and Doksum [1977], Gill et al. [1981], Scales [1985], Larsen and Marx [1986], Van Huffel
and Vandewalle [1991], Stengel [1994], Björck [1996]).  Many of these textbooks focus on
a discussion of optimality conditions for specific types of functions and constraints.  In
groundwater and multiphase flow modeling, the model output is usually a highly nonlinear,
complex function of the parameters, which are constrained by simple physical bounds.  A
theoretical analysis of the objective function’s convexity is not feasible for numerically calcu-
lated model output.  Practical aspects of how to formulate the inverse problem, and how to
identify the minimum of the objective function, are of primary interest to the hydrogeologist.
Good introductions from a general, practical perspective are given by Beck and Arnold
[1977], Gill et al. [1981] and Scales [1985].  A concise description of certain aspects of
inverse modeling can also be found in Press et al. [1992].

A large number of research papers and book articles discuss the concept of inverse
modeling in the context of hydrogeology.  They are summarized and reviewed  by Neuman
[1973], Yeh [1986], Kool et al. [1987], Carrera [1988], Ewing and Lin [1991], Sun [1994],
and McLaughlin and Townley [1996].  The approach implemented in iTOUGH2 is best
described in the classic series of papers by Carrera and Neuman [1986abc].

This chapter is structured according to the outline given by Figure 1.5.1 and Table 1.5.1,
and concludes with a discussion of selected inverse modeling issues.  Theoretical considera-
tions are complemented with examples specific to iTOUGH2, and references to related
iTOUGH2 commands as documented in the report “iTOUGH2 Command Reference”
[Finsterle, 1999b] are made where appropriate.  A description of the general command
syntax is given in Section 3.2 of Finsterle [1999b].
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2 . 2 Parameters

The parameter vector p of length n  contains the TOUGH2 input parameters (or functions
thereof) to be estimated by inverse modeling.  These parameters may represent hydrogeologic
characteristics, thermal properties, initial or boundary conditions, and all aspects of the model
that can be parameterized.  Note that for a heterogeneous aquifer with properties continuously
varying in space, the dimension of the parameter vector is theoretically infinite.  In practice,
however, the spatial variables as well as the continuous partial differential equations are
discretized (e.g., using an integrated finite difference formulation), with constant properties
for each gridblock.  Furthermore, multiple gridblocks can be assigned to specific subregions
of the model domain, which are characterized by constant parameter values, further reducing
the number of parameters to be estimated.  This process is referred to as zonation.  Finally,
heterogeneity can be described by geostatistical methods, in which the spatial variability is
characterized by a relatively small number of geostatistical parameters (e.g., parameters of a
variogram, values at pilot points, attractor parameters; for a review of geostatistically based
inverse methods, see Zimmerman et al. [1998]).

The reduction of the number of parameters from infinity to a finite dimension n  is called
parameterization [Yeh, 1986].  This definition includes the description of data points by
means of a function and its coefficients.  Physical processes such as leaks in an experimental
apparatus or time-varying boundary conditions can also be subjected to parameterization by
describing them with a coefficient or a function, making these processes accessible for esti-
mation.

It is important to realize that the parameters of vector p are only a subset of the  parame-
ters specified in the TOUGH2 input file.  Vector p contains only those parameters that will be
subjected to the estimation process.  All the other parameters specified in the TOUGH2 input
file are fixed and become part of the conceptual model.  Due to inherent correlations between
the fixed and the variable parameters, the best-estimate parameter set depends on the chosen
values of the fixed parameters and the conceptual model in general, i.e., the parameters
estimated by inverse modeling are always model-related.

If one is performing uncertainty propagation analyses, p holds the parameters considered
uncertain.  A probability density function is assigned to these parameters, and the effect on
the uncertainty of the model predictions is then evaluated either by means of linear error prop-
agation analysis or Monte Carlo simulations (see Section 2.8.7).

An element of p may represent a single TOUGH2 input parameter, multiple TOUGH2
input parameters, or a function of TOUGH2 input parameters (see examples below).
Furthermore, the parameter may be transformed to reduce the nonlinearity of the inverse
problem, to eliminate constraints, or to reflect a certain distributional assumption about the
parameter.  The most frequently applied transformation is taking the logarithm of a parameter,
which can make the inverse problem more linear (for a discussion, see Carrera and Neuman
[1986c]), prevents the parameter from becoming negative, and reflects a log-normal distribu-
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tion of the parameter’s uncertainty.  Note that all statistical measures calculated by iTOUGH2
refer to the transformed parameter rather than the parameter used in TOUGH2.

While the elements of vector p are the unknown parameters to be estimated by inverse
modeling, there is often some independent prior information available about these parameters.
Prior information such as measured parameter values can be included in the analysis to regu-
larize the inverse problem and to constrain the estimates [Carrera and Neuman, 1986a;
Chavent, 1991;Vasco et al., 1997; Neumaier, 1998].  Differences between measured parame-
ter values and the corresponding estimates are treated in the same manner as the differences
between the observed and calculated system state.  Consequently, the elements of the prior
information vector p * are included in the observation vector z * (see Section 2.3), i.e., the
first n  elements of z * are identical with the elements of p *, and the first n  elements of
vector z  are identical with the estimates p.  Prior information about a parameter is only
considered if a finite standard deviation is specified for this parameter.

The use of prior information as a means to regularize the inverse problem is convenient.
However, it may also be misleading.  The data used for calibration contain a finite amount of
information about the parameters to be estimated.  If an ill-posed inverse problem is formu-
lated using these data, it can be turned into a well-posed problem by regularization.  This
means, however, that new information must be added, such as a smoothing criterion (see, for
example, Vasco et al [1997]), an arbitrary conditioning matrix (see, for example, Kuczera
and Mroczkowski [1998]) or prior parameter information (see, for example, Carrera and
Neuman [1986a]).  While each of these regularization approaches may lead to a solution of
the inverse problem, they sometimes mask the fact that the original data do not contain
enough information for parameter estimation.  Furthermore, the prior information value must
be conceptually consistent with the value determined from the observations of the system
response to avoid biased estimation.  For example, if the permeability measured on a labora-
tory core is used as prior information in an inversion of a regional flow model, the difference
in scale may compromise the solution.  The use of prior information is only reasonable if it is
an integral, well-understood part of the overall calibration strategy.

An initial guess has to be assigned to each element of p.  The vector holding the initial
guesses is denoted p0  .  Note that the p0  affects the initial sensitivity coefficients and the
efficiency of the minimization algorithm.  Multiple inversions with different initial guesses
should be performed to detect potential local minima.  While often identical, the vector of
initial guesses, p0 , can be different from the prior information vector, p *, which holds
independently measured or estimated parameter values.

Obtaining meaningful estimates of all the parameters in p is only possible if enough data
of good quality are available, and if the model output at the calibration points is sufficiently
sensitive to changes in the parameters.  Furthermore, the parameters must not be strongly
correlated.
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SUMMARY  

The parameter vector p holds a subset of TOUGH2 input parameters or functions thereof.
These are the n  unknown or uncertain parameters subjected to parameter estimation,
sensitivity, or uncertainty propagation analysis.  An initial guess has to be provided, which is
the starting point for the optimization, the base-case parameter set for sensitivity analysis, or
the mean for uncertainty propagation analysis.  Prior information can be included if appro-
priately weighted against the observations of the system state.

EXAMPLES

The following examples describe individual elements of a hypothetical iTOUGH2
parameter vector p of length n = 10 .

p1 Porosity of material domain LOAM1.

p2 Logarithm of the absolute permeability along the third (vertical) principal axis of all
elements belonging to material domain SAND1.

p3 Logarithm of the second parameter of the default capillary pressure function (e.g.,
representing the van Genuchten parameter 1 / α  if ICP=11).

p4 Initial gas saturation in all elements belonging to material domains LOAM1, LOAM2,
and LOAM3.

p5 A factor multiplying the injection rates specified for sources SOU_1 through SOU10.

p6 An unknown offset of the pressure sensor at observation Set 3.

p7 Fracture spacing, which is a parameter of the MINC preprocessor.

p8 The time at which a spill occurred from element INJ99.

p9 The pressure in all (boundary) elements belonging to material domain BOUND.

p10 A user-specified parameter, which can be any combination of TOUGH2 variables.

RELATED iTOUGH2 COMMANDS

The elements of parameter vector p are defined through a combination of iTOUGH2
commands in block > PARAMETER.

Simple parameter transformations are performed using commands >>>> FACTOR,
>>>> LOGARITHM, or >>>> LOG(F).

The initial guess and/or prior information values are taken directly from the TOUGH2
input file; they can be overwritten by using commands >>>> GUESS, >>>> PRIOR, and
>> GUESS.

In order to consider prior information, a standard deviation must be specified using
command >>>> DEVIATION (p) or a related command.  Potential parameter variability
for sensitivity analyses is indicated with command >>>> VARIATION.
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2 . 3 Observations

The observation vector z  of length m  contains the calibration points.  Calibration points
consist of observable variables at discrete points in space and time, at which measured data
are available.  While the true system response is continuous in space and time and would be
described by an infinite number of variables, measurements are sparse, limiting the amount of
information available for inverse modeling.  Because the dimension of vector z  is finite, it is
necessary to select a subset of the output variables and pick discrete points in space and time
as the points at which the measured and calculated system response will be compared (see
Section 2.4).  The type of variable used for calibration is obviously given by the type of
measurements available, and the location of measurement stations usually determines the
points in space at which calibration should occur.  The selection of calibration points in time,
however, is somewhat subjective and may also depend on the time-stepping algorithm of the
model or other factors.  Note that calibration points do not have to coincide with the exact
observation time of actual data points.  In iTOUGH2, linear interpolation is applied to obtain a
data point at the selected calibration time.  Spatial interpolation from observation points to
model gridblocks, however, must be performed as part of data preprocessing outside
iTOUGH2.

It is important to realize that the spatial and temporal distribution of calibration points has
an impact on the inverse modeling results.  For example, selecting logarithmically spaced
calibration times to match data from a transient test puts more weight on the early-time data
relative to the late-time data, possibly affecting the support scale and thus the nature of the
parameter to be estimated.  Similarly, a high data density in one area of the model emphasizes
the corresponding subsystem, potentially compromising the match to data from an adjacent,
less densely sampled region.

Complementary to the observed values at the calibration points (i.e., the actual, trans-
formed, or interpolated data) are the simulation results.  Simulation results are represented by
TOUGH2 output variables (or functions thereof); they depend on the input parameters to be
estimated.

An observable variable qualifies as a calibration point only if it is sufficiently sensitive to
changes in the parameters to be estimated.  The higher the absolute value of the sensitivity
coefficient |∂z / ∂p|, the more information  regarding the parameters of interest is contained in
the corresponding data point.  High sensitivity is a necessary, albeit not sufficient
requirement for accurate parameter estimation (for a detailed discussion, see Finsterle and
Persoff [1997], as well as Section 2.8.2).

The vector of observable variables may also contain parameters.  For example, if perme-
ability was measured on cores in the laboratory, this information can be considered as an
additional data point, and treated along with the direct observations of the system response.
Such measured parameter values are referred to as prior information.
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SUMMARY

The vector holding the data measured at or interpolated to the calibration points is denoted
by z *.

  z *
T = [p1*,K, pn*, zn+1*,K, zm*] (2.3.1)

z * differs from the vector of the true system response z̃  by the unknown measurement
errors (see discussion in Section 2.5.2).  The corresponding model output, which is a func-
tion of space, time, and the model parameters p, is summarized in vector z:

 z(p)
T = [p1,K, pn, zn+1,K, zm] (2.3.2)

If prior information about the parameters is available, the first n  elements of z * are the
measured parameter values, i.e.,   zi* = pi * (i = 1,K,n), and the current estimate p is consid-
ered to be the corresponding model output.

EXAMPLES

The following examples describe individual elements of a hypothetical iTOUGH2 obser-
vation vector z  and the corresponding measurement vector z *.  The example also illustrates
the structure of these vectors as stored in iTOUGH2, with the first n  elements reserved for
prior information, followed by all observations at time T1, then all observations at T2 , etc.  If
no time windows are specified, the total length of vector z  is given by

m = n + ndatasets ⋅ ntimes ≤ MAXM (2.3.3)

where ndatasets ≤ MAXO is the number of data sets (i.e., measurement sensors), and
ntimes ≤ MAXTIM  is the number of calibration times.  The parameters MAXM , MAXO, and
MAXTIM  are the maximum array dimensions as specified in file maxsize.inc (see Section
5.2).  If time windows are specified, the number of elements in z  is less than that of
Equation (2.3.3).

z1 * Independently measured porosity of material domain LOAM1, included as prior
information.

z1 Porosity of material domain LOAM1, currently estimated based on information
contained in z *.

z2 * Measured pressure at Sensor X1 and at time T1

z2 Calculated pressure at gridblock SEN 1 (representing Sensor X1), at time T1.

z3 * Measured TCE concentration in liquid phase at Sensor X2  and at time T1.

z3 Calculated TCE concentration in liquid phase at gridblock SEN 2 (representing
Sensor X2), at time T1.

z4 * Measured cumulative liquid flow rate into opening X3  at time T1.
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z4 Calculated change of total liquid mass in all gridblocks associated with material
domain DRIFT (representing opening X3 ), at time T1.

z3i+n * Same measurement types as before, at times Ti+1.

z3i+n Same model output as before, at times Ti+1.

RELATED iTOUGH2 COMMANDS

The elements of observation vector z  are defined through a combination of iTOUGH2
commands in block > OBSERVATION.  The second-level commands indicate the observa-
tion type; the third-level commands define the location.

The calibration times are specified using command >> TIMES.  If a specific data set
does not cover the entire simulation time, command >>>> WINDOW should be used.

The measurement values are submitted using command >>>> DATA.  One might want
to calibrate against the logarithm of the data rather than their values (command
>>>> LOGARITHM).  This data transformation may be useful to make nonsymmetric
residual distributions more symmetric, better complying with the distributional assumptions
underlying maximum-likelihood estimation.
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2 . 4 Residuals

The residual vector r  of length m  contains the differences between the measured and
calculated system response with elements

 ri = zi * −zi i = 1,K,m (2.4.1)

For example, r2  is the difference between the measured and calculated pressure at time T1
(see example in Section 2.3).  A special type of residuals consists of the differences between
the measured parameters (prior information) and the estimated parameter values.  These
differences—appropriately weighted (see Section 2.5)—can be used to regularize the inverse
problem, making it more stable and well-posed [Carrera and Neuman, 1986a; Neumaier,
1998].  The residuals obtained with the best-estimate parameter set p̂ at the end of an inver-
sion are termed the final residuals.

In inverse modeling, parameters are estimated by minimizing some measure of misfit, the
objective function (see Section 2.6), which is a function of the residuals.  Since the residuals
determine the misfit criterion, it is crucial that the measurements z * and the corresponding
model output z  represent the same physical entity.  Any conceptual difference between the
measured value and its representation in the numerical model necessarily leads to a bias in the
estimated parameters.  There are many reasons for a potential inconsistency between the
measured and calculated values.  For example, the support scale or averaging volume of a
certain measurement may be significantly smaller than the size of the gridblock used in the
numerical model.  Drawdown measurements in a pumping well can only be directly
compared with gridblock pressures if the well is fully discretized in the model.  Downhole
pressures or fractional flows at the head of a geothermal well may be different from the
vertically averaged values calculated in a two-dimensional model of the reservoir.  Relative
pressure measurements may be influenced by atmospheric pressure fluctuations.  If these
effects are not properly accounted for, the parameters are perturbed from their most likely
estimates in an attempt to partly compensate for the error.

Consistency between the measured and simulated quantities must be assured.  If the two
variables are conceptually different, appropriate compensation or correction can be made
either in the numerical model (e.g., by discretizing the well or even the measuring device, or
by accurate simulation of all factors that affect the measurements) or by preprocessing the
data accordingly (e.g., appropriate averaging, interpolation, compensation for temperature
effects, removal of shifts and trends in the data).  In many cases, both the model output and
the measurements must be adjusted to ensure consistency between the two.

SUMMARY

Parameter estimation by inverse modeling is based on a comparison between measured
values and the corresponding model output.  The residual is defined as the difference between
the measured and calculated system response at a given calibration point.  Measured and
calculated variables must be consistent.
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2 . 5 The Stochastic Model

2 . 5 . 1 Introduction

Inverse modeling can be formulated in the framework of mathematical statistics, which
may provide a probabilistic justification for using a specific estimator (such as least squares).
The maximum likelihood approach will be discussed in Section 2.6.  From a more practical
point of view, the stochastic model as summarized in the observation covariance matrix Czz
(see Section 2.5.3) simply provides the weighting factors to scale observations of different
type, magnitude, and accuracy.  Besides these practical considerations, one should realize
that inverse modeling makes the implicit statistical assumption that the final residuals r(p̂)
(where p̂ is the best-estimate parameter set) are error terms, i.e., they are random variables
following a certain distribution.  The stochastic model is therefore defined here as the a priori
description of the distributional assumption about the residuals.

The sources and nature of the error term will be discussed in Section 2.5.2; the observa-
tion covariance matrix, the weighting matrix, and the a priori error variance are introduced in
Section 2.5.3.

2 . 5 . 2 Systematic and random errors

The residuals  can be represented by a statistical model of the form

ri = zi * −zi(p̂) = emi + edi = (bm + εm)i + (bd + εd )i (2.5.2.1)

According to this equation, residual i  is the sum of the error in the model, emi = z̃i − zi(p̂),
and the error in the data, edi = zi * − z̃i , where z̃i  is the true value.  Both modeling error and
data error have a systematic component bi  and a random component εi .

Consider a data set that is drawn from a true, but unknown system response (see Figure
2.5.2.1).  The individual measurement error is defined as the difference between the
measured and the true value.  The modeling error is defined as the difference between the true
and the calculated value.  Since the true system response is unknown, neither the measure-
ment error nor the modeling error is known—only the residual

r = ed + em = (z * −z̃) − (z̃ − z(p̂)) = z * −z(p̂) (2.5.2.2)

can be calculated.  However, the errors may be described in statistical terms, implying that
they are random following a certain distribution.  Recall that estimating parameters by history
matching is based on the assumption that the calculated system response is as close to the true
system response as possible, the latter being represented by a set of noisy data points.  If the
true values are identified, the residuals are by definition equal to the measurement errors.  In
other words, the statistical characteristics of the residuals should be identical or at least similar
to those of the measurement errors.  This interpretation assumes that only random errors are
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present, which can be described using statistical concepts.  The impact of systematic errors as
indicated in Equation (2.5.2.1) will be discussed next.

Time

P
re

ss
ur

e

true pressure

outlier

measurement error residual

calculated pressure

modeling errordata

Figure 2.5.2.1.  True, measured, and calculated system response, and definition of resid-
ual, measurement and modeling error.

 It is very important to appreciate the difference between systematic and random compo-
nents.  Because it is usually not possible or relevant to identify whether a deviation between
the simulation result and the data is attributable to an error in the data or a modeling error, we
disregard the source of an error and only distinguish between its systematic and random
components.  The systematic error in the residuals is denoted by b ≡ bd + bm, and the random
part is termed ε ≡ εd + εm .  Note that in most cases, systematic errors from an incomplete
model description outweigh the systematic measurement errors, i.e., bm >> bd , whereas
random modeling errors such as round-off errors or numerical oscillations are usually small
compared with the random errors in the data, i.e., εm << εd .

Systematic and random components and their relation to the functional and stochastic
model, respectively, are illustrated for the ideal case (i.e., no systematic errors) in Table
2.5.2.1, and for the nonideal case in Table 2.5.2.2.

Under ideal conditions, systematic errors are absent, i.e., b = 0 .  As mentioned above,
the systematic component of the observed system behavior is identical with the true system
behavior, which is presumably identified by accurate modeling of the physics of the flow
problem.  The systematic component is then represented by the functional model, which
includes the conceptual model and its application to the conditions under which the data have
been collected.  In the absence of systematic modeling or measurement errors, the true system
response is asymptotically identified, and the distribution of the final residuals is consistent
with that of the measurement errors as described by the stochastic model.  Note that since
only one, finite set of noisy data is available for calibration, the estimated parameters remain
uncertain.  Nevertheless, this uncertainty can be estimated (see Section 2.7.4).



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 2 5 THEORY

Table 2.5.2.1.  Systematic and Random Components Under Ideal Conditions

data

z * =

true response

z̃ +

measurement error

ed

identified part

systematic component

smooth

conceptual

functional model

TOUGH2 result

unidentified part

random component

rough

distributional

stochastic model

Czz = σ0
2 ⋅ Vzz

calibration point

z * =

calculated response

z(p̂) +

residual

r(p̂)

Table 2.5.2.2.  Systematic and Random Components Under Non-Ideal Conditions

calibration point

z * =

calculated response

z(p̂)

||

z̃ + Xb
f ⋅ b + Xε

f ⋅ ε

true behavior + systematic errors
+ random errors

+

+

residual

r(p̂)

||

Xb
s ⋅ b + Xε

s ⋅ ε

systematic error + random error

Xb
f

: Systematic error explained by functional model

Xb
s = (1 − Xb

f
) : Systematic error to be explained by statistical model

Xε
s

: Random error to be explained by statistical model

Xε
f = (1 − Xε

s
) : Random error explained by functional model

Table 2.5.2.2 shows the nonideal case.  Systematic measurement errors, inconsistencies
between the observed and modeled variables (see discussion in Section 2.4), and modeling
errors almost always lead to a sizable systematic error component.  In these cases, our hope
is that Xb

f
 is small, pushing the systematic errors into the residuals, where they can be readily

identified.  Unfortunately, the size of Xb
f
 is not known.  It depends on the nature of the

systematic error as compared to that of the observed system behavior.  Large random errors
(e.g., outliers) may also bias the inversion.  Again, we hope that Xε

s
 is small and the outliers

can be identified in the residual analysis and eliminated.  The Fisher model test (see Section
2.8.3) is a global check to see whether the distribution of the final residuals is consistent with
the distributional assumption of the stochastic model, potentially identifying flaws in either
the stochastic or the functional model.
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The critical point to realize is that the observed system response is not separated into a
true component and an error component, but into a systematic part (modeled by the process
simulator TOUGH2), and a random part (described by the stochastic model).  The functional
model will try to explain not only the (true) systematic component of the system behavior, but
also any systematic error in the data or the model; the remaining difference—the final
residual—is considered a random component to be analyzed statistically.  As a result, the
estimated parameter set p̂ may not be an unbiased estimate of the true parameter set p̃, and
the model prediction will not closely reproduce the true system behavior z̃ .  Furthermore, the
assumption of randomness in the final residuals, which underlies the a posteriori error
analysis, is violated, leading to problematic uncertainty estimates.  A careful residual analysis
as discussed in Section 2.8.5 may help identify systematic components in the final residuals
as well as outliers that do not conform with the distributional assumption.

We conclude that systematic errors must be removed from both the data and the model, so
that the final residuals only contain random components that can be described by the stochas-
tic model.  The calculated system response, z(p̂), is close to the true system behavior only if
Xb

f
, Xε

s
, and b are sufficiently small, making p̂ a good estimate of the true parameter set.

SUMMARY

The stochastic model describes the random component of the system response, which is
not identified by the functional model.
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2 . 5 . 3 Observation covariance matrix

In the previous section we saw that the unexplained parts of the system response cannot
be described individually, but must be treated by means of a stochastic model, assuming that
the residuals are random and follow a certain distribution.  Furthermore, the distribution of
the final residuals is supposed to be consistent with the distribution of the measurement
errors, assuming that the true system response is correctly identified by the model.

A reasonable assumption about the measurement errors is that they are uncorrelated,
normally distributed random variables with zero mean.  The a posteriori residual analysis
will have to show that this assumption is justified.  The a priori distributional assumption
about the residuals can therefore be summarized in a covariance matrix Czz .  Czz  is an m × m
diagonal matrix.  The j th diagonal element is the variance that represents the measurement
error of observation zj *:

Czz =

σz1

2
0 0 0 L 0

0 σzi

2
0 0 L 0

0 0 σzn

2
0 L 0

0 0 0 σzj

2
L 0

M M M M O M
0 0 0 0 L σzm

2



























(2.5.3.1)

The purposes and interpretations of the elements of Czz  are manifold:

• They scale data of different quality, i.e., an accurate measurement obtains a higher weight
in the inversion than a poor or highly uncertain measurement.

• They scale observations of different types.  For example, flow rates and pressures have
different units and their values differ by many orders of magnitude.  They need to be
scaled appropriately to be comparable in a formalized parameter estimation procedure.

• They weigh the fitting error.

• Czz  is the stochastic model for maximum-likelihood estimation for normally distributed
residuals.

One should realize that only the ratios σzi

2 σzj

2
 are important for parameter estimation,

i.e., the estimated parameter set p̂ is not affected by a linear scaling of the covariance matrix.
We can therefore introduce a factor σ0

2
 and write

Czz = σ0
2 ⋅ Vzz (2.5.3.2)

where Vzz  is a positive definite matrix.  The scalar σ0
2
 is termed the a priori error variance.

It can be interpreted as the variance of a dimensionless error of size one.  In iTOUGH2, a
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different scalar is internally used for each observation type, which allows iterative updating of
their relative weights (see Section 2.8.3).  However, since σ0

2
 can assume any positive

value, it is convenient to set it to 1.0 and work with the actual covariance matrix Czz  rather
than Vzz .  After an inversion, the a posteriori or estimated error variance s0

2
 is calculated.  If

the assumption about the overall size of the measurement errors was correct, and if the true
system behavior is correctly identified, then the ratio s0

2 σ0
2

 should not significantly deviate
from 1.0 (for details about the Fisher model test, see Section 2.8.3).

SUMMARY

The observation covariance matrix Czz  contains the a priori  assumption about the vari-
ances of the final residuals.  The elements of Czz  should be based on the assumed size of the
measurement errors.  Matrix Vzz

−1
 will be used to weigh each residual during the inversion.

The estimated error variance s0
2
 should be consistent with the a priori error variance σ0

2
.

EXAMPLES

The accuracy of a certain pressure transducer may be given to be 5000 Pa.  The square of
this value could be directly used in Czz  to reflect the assumed measurement error.  However,
there are likely to be other random components in the residuals, as a result, for example, of
unmodeled variabilities in the formation properties, which affect the measured pressures, but
are not represented in the model.  The standard deviation of the final residuals is therefore
expected to be larger.

The standard deviation assigned to an individual data point reflects its variability, assum-
ing the same observations were repeated many times.  In most cases, however, only one
measurement is available for each calibration point, i.e., it is usually not possible to estimate
the standard deviation from a statistical analysis of a large number of measurements made at
that point.  Instead of looking at the variability of many realizations at a single calibration
point, one is often forced to estimate the standard deviation based on the variability of one
realization (the measured data) at many calibration points.  In practice, one draws a fitting line
through the data points (similar to the one shown in Figure 2.5.2.1) and estimates the
standard deviation from the scattering of the data about this line.  Keep in mind that the
standard deviation may depend on the magnitude of the observed value itself, in which case it
should be specified as a percentage of the measured value.

Prior information as well as the weighting of certain data points (e.g., integrated
measures or steady-state data points used in combination with transient data points) require
special considerations.  The relative weight given to prior information or a single steady-state
data point depends on the number of calibration points assigned to other observations.  It is
therefore best to think of the purpose of Czz

−1
 as a weighting matrix.  If a single steady-state

data point should receive a weight comparable to that of, for example, one hundred transient
data points, then the standard deviation of the steady-state data point should be taken to be
1% of the actual measurement uncertainty (see also Finsterle [1999c; Problem 5]).
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RELATED iTOUGH2 COMMANDS

The diagonal elements of matrix Czz  are specified using one of the following commands
in block > OBSERVATIONS:
>>>> DEVIATION, >>>> VARIANCE, >>>> WEIGHT, >>>> RELATIVE, and
>>>> AUTO.  The units of the standard deviations specified in iTOUGH2 must be identical
to those of the corresponding data set, i.e., the standard deviations are internally multiplied
by the factor specified using command >>>> FACTOR (o), which converts the units of
the data to standard TOUGH2 units.  If calibration occurs against the logarithm of the
observed data (see command >>>> LOGARITHM (o)), the standard deviations must also
refer to the logarithm.

The first n  diagonal elements are used to weigh prior information about the parameters,
and are specified through one of the following commands in block > PARAMETERS:
>>>> DEVIATION, >>>> VARIANCE, or >>>> WEIGHT.  If prior information shall
not be weighted in the inversion, command >>>> VARIATION should be used instead to
describe a typical parameter variation.

Command >>> TAU allows iterative adjustment of the relative weights between obser-
vations of different types by updating the internally generated a priori error variances (see
Section 2.8.3).
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2 . 6 Objective Function

2 . 6 . 1 The norm as a measure of misfit

The purpose of the objective function is to provide an integral measure of misfit between
the model and the data, i.e., a parameter set that reduces the value of the objective function is
considered superior to those with higher values because it improves the fit according to the
criterion embedded in the objective function.  The best-estimate parameter set is the one that
minimizes the objective function.  It is the topology of the objective function near the mini-
mum that determines the uncertainty of the estimates and the correlation structure.  The objec-
tive function may be convex or exhibit multiple local minima; it may be close to quadratic or
highly nonlinear in nature; it may be continuous, differentiable, and smooth, or discontinu-
ous, not differentiable, and rough.  All these properties affect the choice and efficiency of the
minimization algorithm, and—more importantly—the quality of the solution, its stability, and
the degree to which the inverse problem is well posed.

The objective function is also termed performance measure, penalty function, energy
function, cost function, misfit criterion, etc.

The question of how to identify the minimum of the objective function is addressed in
Section 2.7, where various minimization algorithms will be discussed.  Note that even if the
global minimum of the objective function is identified, this does not necessarily mean that the
fit is acceptable.  This question is discussed in Section 2.8.

There are many ways to measure the difference between the observed and calculated
system response.  In the standard procedure of trial and error calibration, the simulation
results and data are plotted, and a rather subjective judgment is made as to how well the
model output matches the data.  A more objective way is to calculate a norm of the residual
vector:

r p = ri
i=1

m

∑
p









1 p

(2.6.1.1)

The most commonly used norms are the L1-norm, the L2 - or Euclidean norm, and the
L∞ -norm, corresponding to the L1-estimator, the Least Squares estimator, and the Minmax
estimator, respectively.  The choice of an appropriate objective function should be based on
the properties of the residuals themselves.  The maximum likelihood approach discussed in
Section 2.6.3 takes the distributional assumption about the measurement errors as a basis for
choosing the objective function.  The central limit theorem leads to the assumption that the
residuals are normally distributed, making least squares—discussed in Section 2.6.4—a
reasonable choice.  The normality assumption is also made to facilitate statistical analysis of
results.  Least squares is used almost exclusively in groundwater inverse modeling
[McLaughlin and Townley, 1996] and many other fields.  However, the distribution of the
residuals often deviates from being Gaussian.  For example, the presence of outliers in the



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 3 1 THEORY

data or systematic modeling errors lead to non-symmetric distributions, which often exhibit
stronger tails than those predicted by the normal distribution.  For these cases, alternative
objective functions may be more appropriate to avoid biased estimates.  These so-called
robust estimators are discussed in Section 2.6.5

2 . 6 . 2 Properties of the objective function

The objective function is a hypersurface in the n -dimensional parameter space.  The
global minimum represents the best-estimate parameter set.  Figure 2.6.2.1 is a visualization
of the objective function for n = 2 .  For a nonlinear model, the topography of the objective
function may exhibit a global minimum, multiple local minima, inflection points, stationary
points, ridge lines, ledges, etc.  However,  since the standard objective function is a sum of
squares (see Section 2.6.4), the objective function near the global minimum is close to
parabolic with elliptical contour lines.  The second-order methods for identifying the mini-
mum (see Section 2.7) take advantage of this specific property of the objective function.  A
linear model yields a parabolic objective function, the minimum of which is easy to identify.
In the nonlinear case, the topography away from the minimum becomes intricate, making it
difficult for the optimization algorithm to iteratively proceed towards the minimum.
Moreover, an ill-posed inverse problem leads to level plains, long narrow valleys, or ridge
lines, at which the minimum is poorly defined, if at all.  In fact, it is the topology of the
objective function that indicates whether an inverse problem is well-posed or ill-posed.  For
example, multiple parameter combinations with S  values close to that obtained at the global
minimum indicate nonuniqueness.  (The presence of local minima does not constitute
nonuniqueness.)  Furthermore, the estimation uncertainty is related to the convexity of the
objective function near the minimum.  (This will be discussed in detail in Section 2.8.)
Assuming a continuous objective function that is twice differentiable, the gradient is zero at
the minimum and the Hessian matrix is positive definite.

S

p1

p2

Figure 2.6.2.1.  Objective function in two-dimensional parameter space.
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2 . 6 . 3 Maximum likelihood

Let p be the parameter vector of length n .  More precisely, p is a hypothesis regarding
the values of the deterministic, albeit uncertain model parameters.  As before, z  is the obser-
vation vector of length m .  The probability density function (PDF), Φ(z;p), is defined as the
probability (Pr) of observing the data z * if p were true: Φ(z;p) = Pr z = z * p( ).  Note that
p is unknown, nevertheless deterministic.  If the observations are independent random vari-
ables, the joint PDF is given by the product of the probabilities of the individual observations:

Φ(z;p) = Φ(zi;p)
i=1

m

∏ (2.6.3.1)

From a different perspective, this equation may be seen as describing the likelihood of p
when zi * is fixed.  This is termed the likelihood function:

Φ(z;p) ⇔ L(p;z*) (2.6.3.2)

For each parameter set p, the likelihood function L(p;z*) gives the probability of
observing z *.  Thus we can think of L(p;z*) as a measure of how likely p is to have
produced the observed data z *.  In other words, the likelihood function quantifies the degree
to which the data support a given hypothesis regarding the model parameters.  The method of
maximum likelihood consists of finding the parameter set that is most likely to have produced
the data.

The maximum likelihood approach is discussed for the normal distribution in the follow-
ing section, leading to the least squares estimator.  Other estimators, such as the L1- or
Cauchy estimators presented in Section 2.6.5, may also be derived from maximum likelihood
considerations (see also Larsen and Marx [1986]).

2 . 6 . 4 Least squares

Under certain circumstances it is reasonable to assume that the measurement errors
(z * −z̃)  are normally distributed with mean E[(z * −z̃)] = 0 and covariance matrix
E[(z * −z̃)(z * −z̃)

T
] = Czz .  This assumption is only valid if sufficient data points exist, in

which case the maximum likelihood estimator becomes consistent and asymptotically effi-
cient, leading to unbiased and normally distributed estimates.  Deviations from these assump-
tions are discussed in Section 2.6.5.  The likelihood function for normally distributed errors
can be written in its multivariate form as

L(p;z*) = (2π)
−m 2

Czz
−1 2 exp − 1

2 (z * −z̃)
T

Czz
−1

(z * −z̃)[ ] (2.6.4.1)

In order to determine the maximum of Equation (2.6.4.1), it is generally easier to mini-
mize the negative log-likelihood or support criterion:

Γ = −2 ln[L(p;z*)] (2.6.4.2)
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The log-likelihood criteria from independent data sets can simply be summed up to obtain the
log-likelihood of all the data used in an inversion.  The negative log-likelihood function for
normally distributed errors is given by

Γ = m ⋅ ln(2π) + ln Czz + (z * −z̃)
T

Czz
−1

(z * −z̃)[ ] (2.6.4.3)

where the second term on the right-hand side could be expanded to include separate terms for
the error variance σ0

2
 and matrix Vzz , and the last term could be written as a sum of the

contributions from different, independent data sets, such as pressures, flow rates, prior
information, etc.  The first term is a constant.

If the stochastic model—the covariance matrix Czz—is assumed to be known and fixed,
minimizing Equation (2.6.4.3) is equivalent to minimizing the Gauss-Markov objective func-
tion

S = (z * −z(p))
T

Czz
−1

(z * −z(p)) (2.6.4.4a)

Note that the vector of the true system behavior, z̃ , was replaced with the vector holding the
model results, z(p), which depend on the parameter vector p.  Since (z * −z(p)) = r , and
Czz  is a diagonal matrix, the objective function S  is the sum of the squared residuals,
weighted by the inverse of the prior variances σi

2
:

S = ri
2

σzi

2
i=1

m

∑ (2.6.4.4b)

SUMMARY

If the residuals are normally distributed, minimizing the weighted least squares objective
function leads to maximum likelihood estimates.
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2 . 6 . 5 Robust estimators

Using the definitions introduced in Section 2.5.2, the classical assumption underlying
least-squares estimation can be described as follows: (1) the random errors ε  are indepen-
dent, (2) they are normally distributed with mean zero and variance σz

2
, and (3) there are no

systematic errors, i.e., b = 0 .  In many hydrogeologic applications, these assumptions are
unlikely to be satisfied.  The consequences of making inappropriate assumptions about the
residuals are discussed in this section, and the concept of robust estimation is introduced and
critically reviewed.

There are two types of violations of the standard assumption.  The first considers random
errors that do not follow a Gaussian distribution.  This might occur if the error distribution is
contaminated by a few large outliers.  Since the number of data points used in an inversion is
finite, even a small number of deviate points causes the least-squares fit to be distorted, lead-
ing to parameter estimates with low precision.  A similar effect occurs if the error distribution
is heavy-tailed, for example, if a Gaussian distribution is contaminated by a large number of
relatively small outliers.

The second type of violation occurs in the presence of systematic errors that usually lead
to an asymmetric distribution of the residuals.  If certain portions of the data exhibit a
systematic error, the corresponding residuals are likely to become deviate points.  If a certain
systematic error affects a single point used for calibration, it cannot be determined whether
the large residual stems from a systematic error or is an outlier as a result of a random
process; such a distinction is also insignificant.  If multiple calibration points are affected by
the same systematic error source, the corresponding residuals are strongly correlated and tend
to have the same sign over a certain interval in space and time.  The ensemble of residuals
contaminated with systematic errors, however, can be viewed as one or several outlier points.
The interpretation of systematic errors as equivalent, usually large outliers is the main reason-
ing for subjecting them to robust estimation methods.  But it is obvious that if the entire data
set or model is flawed, such errors cannot be mitigated by using robust estimators.

Systematic errors may be local both in time and space.  For example, inconsistent initial
or boundary conditions often result in systematic deviations between the data and the model
prediction at early or late times during a transient experiment, leading to errors in a specific
time segment.  Similarly, a data set from a sensor that is either defective or placed in a unit
that is poorly represented in the model leads to erroneous residuals at a specific point in
space, again corrupting the inversion.  Note that these types of systematic errors may not
appear as obvious outliers and are therefore difficult to identify.

Before we introduce the robust estimators, we would like to emphasize that the main
effort in estimating parameters by inverse modeling should be placed on avoiding systematic
errors and minimizing random errors.  The robust estimators presented here do not exempt
the experimentalist and/or modeler from a comprehensive test design, careful execution of the
experiment, accurate model development, and conscientious analysis of the inverse modeling
results.  However, systematic errors in the conceptual model and non-Gaussian random
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errors in the data are inherent in inverse modeling, and the problems associated with
systematic errors seem to be accentuated rather than alleviated by the use of the standard least-
squares estimator.

An overview of robust statistical procedures with mathematically rigorous definitions of
their underlying concepts can be found in Huber [1981, 1996].  Here, we follow a more
intuitive approach and introduce the robust estimators by discussing their common property
of reducing the weight of deviate points.

As a generalization of Equation (2.6.4.4), fitting a model to data for parameter estimation
can be formulated as a minimization problem of the form [Haining, 1990]

minimize S = ω(yi
i=1

m

∑ ;p) (2.6.5.1)

Here, ω  is an arbitrary loss function, which is a function of the weighted residuals

yi = zi * −zi(p)
σzi

(2.6.5.2)

where σzi
 is the measurement error.  At the minimum of S , the derivatives of the objective

function (2.6.5.1) with respect to the parameters pj  vanish

1
σzii=1

m

∑ ψ ∂yi
∂pj

= 0 j = 1,K,n (2.6.5.3)

where the function ψ  is defined as the derivative of the loss function, ψ ≡ ∂ω / ∂y .

The choice of the arbitrary loss function ω  can be based on probabilistic considerations
(as discussed in Section 2.6.3), with ω  being the negative logarithm of the probability
density function.  When adopting this viewpoint, the parameters p = p̂ of a model y(p) that
minimize Equation (2.6.5.1) are the maximum-likelihood estimates for p.  As outlined in
Section 2.6.4 for normally distributed errors, the loss function can be directly derived from
the Gaussian distribution to be ω(y) = (1 / 2)y

2
 and ψ (y) = y .  Note that the ψ  function

serves as a weighting function in Equation (2.6.5.3).  For example, least squares assigns
greater weights to increasingly deviant points, reflecting the assumption that outliers are very
unlikely according to the normal distribution.  Consequently, if we suppose that the weighted
residuals follow a distribution with a longer tail, that is, with a somewhat larger probability of
encountering points removed from the central region, we should choose a ψ  function that
yields decreasing relative weights for deviant points.  It is expected that reducing the weight
of outliers makes the estimator more robust.
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Many functions with the desired properties have been proposed in the literature (see
Andrews et al. [1972], Press et al. [1992]).  Some are maximum-likelihood estimators for
known error distributions, whereas others do not correspond to a standard probability density
function.  Five estimators are implemented into iTOUGH2.  They include (1) Least Squares
(LS), (2) Least Absolute Residual (LAR) or L1-estimator, (3) the maximum-likelihood
estimator for measurement errors following a Cauchy distribution, (4) one of the robust esti-
mators proposed by Huber, and (5) the Andrews estimator.  Their functional forms— c  is a
user-specified parameter—are summarized in Table 2.6.5.1.  The loss function ω(y) of the
five estimators is shown in Figure 2.6.5.1.

Note that for the Andrews estimator, observations with weighted residuals larger than cπ
are considered to be true outliers and are not counted at all in the estimation of the parameters.
This property may lead to difficulties when using the Andrews estimator in a nonlinear
optimization problem where the initial guess p0  is far away from the best estimate, in which
case the initial residuals are too large.  As a consequence, the gradient of the objective func-
tion becomes unstable, making it difficult for the minimization algorithm to converge.  It is
therefore suggested to first perform a standard least-squares fit before switching to the
Andrews estimator.  The five estimators are compared in a study by Finsterle and Najita
[1998].

Table 2.6.5.1.  Estimator, Underlying Distribution, Loss Function, and ψ  Function

Estimator,

Distribution
Loss Function ω ψ  Function

Least-squares,

Gaussian
ω = 1

2 y
2 ψ = y

L1-estimator,

Double exponential
ω =|y| ψ = 1

−1{ for y > 0
y < 0

Cauchy,

Cauchy
ω = log 1 + 1

2 y
2( ) ψ = y

1 + 1
2 y

2

Huber (quadratic-linear)

@
ω = y

2
2

c y − c
2

2






for |y|≤ c

|y|> c ψ =
−c
y
c






for

y < −c
|y|≤ c
y > c

Andrews,

@
ω = 1 − cos(y / c)

2{ for |y|≤ cπ
|y|> cπ ψ = sin(y / c)

0{ for |y|≤ cπ
|y|> cπ

@ No standard probability distribution available
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Figure 2.6.5.1. Loss functionω  of five estimators as a function of the weighted residual.

SUMMARY

Errors in either the data or the numerical model used for the inversion usually exhibit a
non-Gaussian distribution.  While the standard error of the residuals is by definition smallest
when using least squares, robust estimators are less affected by the presence of random
errors following a heavy-tailed distribution or by systematic modeling errors, leading to more
consistent and less biased estimates.  The robust estimators only perform better for a specific
type of systematic errors, and the errors must be contained within a limited portion of the
data.  Systematic errors and outliers should be eliminated whenever possible.

RELATED iTOUGH2 COMMANDS

The following commands can be used to select the objective function:
>>> LEAST-SQUARES (default), >>> ANDREWS, >>> CAUCHY,
>>> L1ESTIMATOR, and >>> QUADRATIC-LINEAR.
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2 . 7 Minimization Algorithm

2 . 7 . 1 Classification

The purpose of the minimization algorithm is to find the minimum of the objective func-
tion by iteratively updating the parameters of the model.  The objective function is a global
measure of misfit between the data and the corresponding model output.  Since the model
output z(p) depends on the parameters, the fit can be improved by changing the elements of
the parameter vector p.  The search for the minimum occurs in the n -dimensional parameter
space.  A number of strategies were developed to find parameter combinations that reduce the
value of the objective function.  The available methods are often classified based on criteria
such as the mathematical form of the constraints imposed, the method of regularization, the
solution method for obtaining orthogonal matrices, etc.  [Jacoby et al., 1972; Gill et al.,
1981; Björck, 1996].  We classify the methods according to whether they are based on a
sequence of forward simulations only, or whether they require calculation of the gradient or
second-order derivatives.  With the exception of Simulated Annealing, all methods described
below identify only a local minimum near the starting point.

Non-Derivative Methods: In these methods, the model is evaluated for different parameter
combinations, mapping out the objective function in the n -dimensional parameter space.
They are also referred to as Function Comparison Methods.   Because no derivatives of the
objective function with respect to the parameters must be calculated, these methods are not
restricted to smooth models.  However, they usually require many trial simulations and are
therefore inefficient.  Examples of such direct search methods include:

• Trial and error
• Grid search
• Downhill Simplex
• Simulated Annealing
• Genetic algorithms

Gradient-Based Methods: These methods require calculating the gradient of the objective
function with respect to the parameter vector.  Updating the parameter vector in small steps
along the search direction determined by the gradient is a robust, albeit inefficient, procedure.
Various modifications of this basic scheme have been proposed.  Their main difference lies in
the choice of an appropriate step length.  Efficient ways of calculating the gradient have been
described in the literature [Carrera and Neuman, 1986b;Sun and Yeh, 1990;Vasco and Datta-
Gupta, 1999].  Examples of gradient-based methods include:

• Steepest descent
• Quasi-Newton methods
• Conjugate gradient methods

- Method of Fletcher-Reeves
- Method of Broyden
- Method of Fletcher-Powell-Davidon
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Second Derivative Methods: These methods are based on the Hessian matrix or various
approximations thereof (quasi-linearization).  They perform well for nearly linear least-
squares problems.  The computational cost for calculating the second derivatives is usually
compensated by an efficient stepping in the parameter space.  Examples of second-order
methods include:

• Newton method
• Gauss-Newton method
• Levenberg-Marquardt

Each of these methods has its advantages and disadvantages.  The choice of an appropri-
ate method largely depends on the presumed properties of the objective function.  The follow-
ing algorithms are implemented into iTOUGH2:

• Gauss-Newton
• Levenberg-Marquardt
• Downhill Simplex
• Simulated Annealing
• Grid Search

The Levenberg-Marquardt minimization algorithm (see Section 2.7.3) was found to
perform well for most iTOUGH2 applications.  It is a modification of the Gauss-Newton
algorithm for nonlinear least-squares optimization, which will be described first in Section
2.7.2.  The Downhill Simplex method (Section 2.7.4) does not require the calculation of
derivatives; its convergence rate, however, is usually slow.  Simulated Annealing, described
in Section 2.7.5, has the advantage of being able to escape local minima, but requires many
solutions of the forward problem.  Simply evaluating parameter combinations over the entire
range of possible values (Grid Search, see Section 2.7.6) provides the database for a
complete mapping of the objective function in the parameter space.  However, this method is
computationally prohibitive for most applications, and is used mostly for illustrative purposes
(see, for example, Finsterle and Faybishenko [1999]).  A comparison of all minimization
algorithms can be found in Section 2.7.9 as well as Finsterle [1999c; Problem 4].

All methods presented here are iterative, i.e., they start with an initial parameter set, and
an update vector is calculated at each iteration.  A step is successful if the new parameter set at
iteration (k + 1) ,

pk+1 = pk + ∆pk (2.7.1.1)

leads to a reduction in the objective function, i.e.

S pk+1( ) < S pk( ) (2.7.1.2)

The algorithms discussed in Sections 2.7.3 through 2.7.6 differ in the way they calculate
∆pk .  We first introduce in Section 2.7.2 the gradient, Jacobian, and Hessian matrices as
basic elements of Newton’s method, before we discuss the Gauss-Newton and Levenberg-
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Marquardt algorithms, which are both specific cases of the Newton method.  The Downhill
Simplex method and Simulated Annealing are described in Sections 2.7.5 and 2.7.6, respec-
tively.

2 . 7 . 2 Gradient, Jacobian, and Hessian matrix

The Gauss-Newton and Levenberg-Marquardt algorithms belong to a class of methods
that are based on a quadratic approximation of the objective function, in contrast to the linear
assumption in steepest-descent methods.  If first and second derivatives of S  are available, a
quadratic model of the objective function can be obtained from the first three terms of the
Taylor-series expansion:

S pk+1( ) ≈ S pk( ) + gk
T∆pk + 1

2 ∆pk
T
Hk∆pk (2.7.2.1)

The minimum of the right-hand side of (2.7.2.1) is achieved if ∆pk  minimizes the quadratic
function

Φ ∆p( ) = gk
T∆p + 1

2 ∆p
T
Hk∆p (2.7.2.2)

Here, gk  is the gradient vector and Hk  is the Hessian matrix.  For the least-squares objective
function (2.6.4.4) or approximations thereof, the gradient vector has elements

gj = 2
ri

σzi

2
∂ri
∂pji=1

m

∑ j = 1,K,n (2.7.2.3)

Defining the Jacobian matrix as

J = − ∂r
∂p = ∂z

∂p =

∂z1
∂p1

L
∂z1
∂pn

M M
∂zm
∂p1

L
∂zm
∂pn



















(2.7.2.4)

the gradient vector at iteration k  can be written as

gk = −2Jk
T
Czz

−1
rk (2.7.2.5)

The Hessian H  is an n × n matrix with the second partial derivatives of the objective func-
tion.  For least squares, the Hessian can be written as

Hk = 2 Jk
T
Czz

−1
Jk + riGi

i=1

m

∑







 (2.7.2.6)
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where Gi = ∇2
ri σzi

 is the Hessian of the weighted residuals.  Denoting the sum in Equation
(2.7.2.6) with B, it becomes obvious that the Hessian of a least-squares objective function
consists of a special combination of first- and second-order information:

Hk = 2 Jk
T
Czz

−1
Jk + B( ) (2.7.2.7)

Note that B is zero if the model is linear, and becomes significant only for highly nonlinear
models and if the residuals are large, as is the case far away from the minimum and with
noisy data.  Also note that the positive and negative residuals in B do not cancel one another,
i.e., the Hessian is not necessarily a positive-definite matrix.

At the minimum of Equation (2.7.2.2), ∆pk  satisfies the linear system

Hk∆pk = −gk (2.7.2.8)

Combining Equations (2.7.2.5), (2.7.2.7) and (2.7.2.8) yields Newton’s method:

∆pk = Jk
T
Czz

−1
Jk + B( )−1

Jk
T
Czz

−1
rk (2.7.2.9)

The various iterative solutions to the nonlinear least-squares problem are based on differ-
ent approximations to the Hessian, as discussed in the following two sections.

There are several methods for calculating the elements of the Jacobian matrix, i.e., the
sensitivity coefficients, including (1) the Influence Coefficient or Perturbation Method, (2)
the Sensitivity Equation or Direct Derivative Method, and (3) the Variational Method [Yeh,
1986; Carrera, 1988].  In iTOUGH2, the Jacobian matrix (2.7.2.4) is evaluated numerically
using the Perturbation Method with either forward or centered finite differences:

forward Jij = ∂zi
∂pj

≈
zi(p; pj + δpj ) − zi(p)

δpj
(2.7.2.10a)

centered Jij = ∂zi
∂pj

≈
zi(p; pj + δpj ) − zi(p; pj − δpj )

2δpj
(2.7.2.10b)

Here, δpj  is a small perturbation of parameter j , usually given as a fraction α  of the
parameter value, δpj = α ⋅ pj .  Note that calculating a forward finite-difference approximation
of the Jacobian requires (n + 1) TOUGH2 simulations.  Centered finite differences are more
accurate, but require (2n + 1) forward runs.  High accuracy is usually not required by the
minimization algorithm, but may be desirable for the error analysis.

RELATED iTOUGH2 COMMANDS

The evaluation of the Jacobian matrix is governed by the subcommands of command
>> JACOBIAN.
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2 . 7 . 3 The Gauss-Newton method

The Gauss-Newton method is based on the premise that the first-order term (J
T
Czz

−1
J)  of

the Hessian dominates relative to the second-order term B.  This assumption is justified for
linear and mildly nonlinear problems and for nonlinear problems near the solution, where the
residuals are expected to be small, i.e., when the objective function is sufficiently smaller
than the eigenvalues of (J

T
Czz

−1
J) .

In the Gauss-Newton method, the Hessian is approximated by setting B to zero, which
ensures that matrix H  in Equation (2.7.2.8) is positive definite.  This is equivalent to approx-
imating the actual objective function by a quadratic function as illustrated for one and two
parameters in Figure 2.7.3.1.  The Gauss-Newton direction is given by

∆pk = Jk
T
Czz

−1
Jk( )−1

Jk
T
Czz

−1
rk (2.7.3.1)

which is the solution of the linear least-squares problem.  For nonlinear models, the parame-
ter vector is updated, and a new Gauss-Newton direction is calculated.  The procedure is
summarized in Table 2.7.3.1.

Table 2.7.3.1.  Gauss-Newton Minimization Algorithm

 Step 1: Initialization:
- Set iteration index k = 0 .
- Define initial parameter set pk=0 = p0  (usually p0 = p *).

 Step 2: Run simulation model with parameter vector pk .

 Step 3: Evaluate r(pk ), S(pk ), and J(pk ).

 Step 4: Calculate parameter update:  ∆pk = Jk
T
Czz

−1
Jk( )−1

Jk
T
Czz

−1
rk .

 Step 5: Update parameter vector:  pk+1 = pk + ∆pk .

 Step 6: Perform simulation and evaluate S(pk+1).

 Step 7: Evaluate convergence criteria (see Section 2.7.8).
If converged, go to Step 8, else set k = k + 1 and go to Step 2.

 Step 8: Minimization terminated.  Proceed with residual and uncertainty analysis.
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Figure 2.7.3.1.  Objective function of a linearized least-squares problem as a function of
one parameter (top), and two parameters (bottom).

The Gauss-Newton method is efficient if the initial guess is close to the minimum and/or
the model is nearly linear, i.e., if (J

T
Czz

−1
J)  is a good approximation of the Hessian.

However, if the model is highly nonlinear, the parameter update calculated by Equation
(2.7.3.1) can be too large, leading to an inefficient or even unsuccessful step in which the
value of the objective function is increased rather than decreased.

RELATED iTOUGH2 COMMANDS

The Gauss-Newton algorithm is invoked by command >>> GAUSS-NEWTON.  This
sets the Levenberg parameter (see Section 2.7.4) to zero and skips the control runs and
updating of the Levenberg parameter.
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2 . 7 . 4 The Levenberg-Marquardt method

For strongly nonlinear models, if the parameter vector pk  is far away from the optimum
parameter set, the Hessian is not necessarily a positive-definite matrix, and the approximation
(J

T
Czz

−1
J)  used by the Gauss-Newton method may not lead to an efficient or successful step.

In the Levenberg-Marquardt method, the approximation to the Hessian is made positive
definite by replacing B in Equation (2.7.2.7) with an n × n diagonal matrix λkDk :

∆pk = Jk
T
Czz

−1
Jk + λkDk( )−1

Jk
T
Czz

−1
rk (2.7.4.1)

The scalar λ  is the so-called Levenberg parameter [Levenberg, 1944], and the elements of
matrix Dk  are given by Djj = (Jk

T
Czz

−1
Jk ) jj , j = 1,K,n .  If λk  is zero, ∆pk  is identical with

the Gauss-Newton step; as λk → ∞ , the approximation of the Hessian becomes diagonally
dominant.  Consequently, ∆pk  becomes parallel to the steepest-descent direction, and the
step length approaches zero.  After each iteration, the Levenberg parameter is either increased
or decreased following a scheme proposed by Marquardt [1963] (see Table 2.7.4.1).  Far
away from the minimum, i.e., during the first few iterations, a relatively large value of λk  is
chosen, leading to small steps along the gradient of the objective function.  Stepping along
the steepest-descent direction is a robust strategy, ensuring that S(pk+1) < S(pk ) for suffi-
ciently large λk .  However, the step length ∆pk 2

 may be very small and minimization
becomes inefficient.  Therefore, λk  is decreased by a factor of 1 / ν  after each successful
step, where ν > 1 is the so-called Marquardt parameter.  With decreasing λk , ∆pk
approaches the Gauss-Newton step with its quadratic convergence rate.  If an unsuccessful
step is proposed, i.e., the objective function is increased, λk  is increased by ν .

Figure 2.7.4.1 shows the contours of (Jk
T
Czz

−1
Jk ) , which is the quadratic approximation

of S  at iteration k . The curved line connecting p * with the center of the ellipse indicates the
possible end points of Levenberg-Marquardt steps ∆pk(λ ) as a function of λ .

The Levenberg-Marquardt method can be viewed as a flexible combination of the robust-
ness of a steepest-descent method and the efficiency of a second-order Gauss-Newton
method.  While standard first-derivative methods require a strategy to estimate the length of
the step to be taken along the gradient, the Levenberg-Marquardt algorithm takes this infor-
mation from the curvature matrix (Jk

T
Czz

−1
Jk ) , and uses it to increase the efficiency as the

minimum is approached.  The Marquardt scheme of adapting the search direction and step
length provides the flexibility needed for the minimization of objective functions with a
complex topography.

RELATED iTOUGH2 COMMANDS

The Levenberg-Marquardt method is the default minimization algorithm in iTOUGH2; it
can be explicitly selected using command >>> LEVENBERG-MARQUARDT.  The initial
value of the Levenberg parameter (default: λ0 = 10

−3
) and the Marquardt parameter (default:

ν = 10) are selected using commands >>> LEVENBERG and >>> MARQUARDT.
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Table 2.7.4.1.  Levenberg-Marquardt Minimization Algorithm

 Step 1: Initialization:
- Set iteration index k = 0 .
- Define initial Levenberg parameter (default: λ0 = 10

−3
).

- Define Marquardt parameter (default: ν = 10).
- Define initial parameter set pk=0 = p0 .

 Step 2: Run simulation model with parameter vector pk .

 Step 3: Evaluate r(pk ), S(pk ), and J(pk ).

 Step 4: Calculate parameter update:  ∆pk = Jk
T
Czz

−1
Jk + λkDk( )−1

Jk
T
Czz

−1
rk

where Dk  is an n × n matrix with elements Djj = (Jk
T
Czz

−1
Jk ) jj ,   j = 1,K,n .

 Step 5: Update parameter vector:  pk+1 = pk + ∆pk .

 Step 6: Perform simulation and evaluate S(pk+1).

 Step 7: If S(pk+1) < S(pk ), multiply λ  by factor 1 / ν  and go to Step 8.

 If S(pk+1) > S(pk ), multiply λ  by factor ν  and go to Step 4.

 Step 8: Evaluate convergence criteria (see Section 2.7.8).
If converged, go to Step 9, else set k = k + 1 and go to Step 2.

 Step 9: Minimization terminated.  Proceed with residual and uncertainty analysis.

p1

p2

p1*

p2*

Gauss-Newton step
λ = 0

Steepest descent
λ large

Proposed steps
for intermediate λ

quadratic 
approximation of S

Figure 2.7.4.1.  Steps proposed by the Levenberg-Marquardt method as a function of the
Levenberg parameter λ .
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2 . 7 . 5 The Downhill Simplex method

The Downhill Simplex method [Press et al., 1992] does not make any assumptions about
the topography of the objective function and does not require derivatives.  It is a robust, albeit
rather inefficient method.

A simplex is a geometrical figure defined by n + 1 vertices in the n -dimensional parame-
ter space.  In iTOUGH2, the initial simplex consists of the initial guess p0  defining the
origin, and n  additional points, each of which lies on one of the parameter axes at a distance
σpj

 from the origin, where σpj
 is the prior standard deviation or expected variation of

parameter j .  The Downhill Simplex method takes one of the following steps (see Figure
2.7.5.1):

Reflection  The point of the simplex with the largest objective function is moved through the
opposite face of the simplex.

Reflection and Expansion  If the reflected point is lower than the lowest point of the original
simplex, the simplex is expanded in that direction.

One-dimensional Contraction  If the reflected point is higher than the second-highest point of
the original simplex, the simplex is contracted in that direction to find an intermediate point.

Overall Contraction  If one-dimensional contraction is unsuccessful, an overall contraction
around the lowest point is performed.

After convergence (see Section 2.7.8), iTOUGH2 evaluates the Jacobian matrix for the
subsequent error analysis.

RELATED iTOUGH2 COMMANDS

The Downhill Simplex algorithm is invoked by using command >>> SIMPLEX.  The
size of the initial simplex is defined by commands >>>> DEVIATION (p) or
>>>> VARIATION.
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simplex at beginning
of step

reflection

reflection and expansion

contraction

overall contraction

high

low

(a)

(b)

(c)

(d)

(e)

Figure 2.7.5.1.  Possible outcomes for a step in the Downhill Simplex method (after
Press et al. [1992]).  The simplex for n = 3 is a tetrahedron;  (a) shows it at the beginning of
a step.  The simplex after a step can be (b) a reflection away from the high point, (c) a reflec-
tion and expansion away from the high point, (d) a contraction along one dimension from the
high point, or (e) a contraction along all dimensions towards the low point.



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 4 8 THEORY

2 . 7 . 6 Simulated Annealing

Simulated Annealing [Metropolis et al., 1953] is a technique suitable for solving large
optimization problems, where the objective function is likely to exhibit many local minima.
Moreover, no derivatives are required, and the objective function may even be discontinuous.

The basic idea behind the algorithm is an analogy with thermodynamics, specifically with
the way metals cool and anneal (see, for example, Press et al. [1992]).  Simulated Annealing
takes random steps ∆pk,i , which are based on the expected variability of the parameter.  In
iTOUGH2, the variability decreases during the optimization process.  A new parameter set
pk,i = pk, j + ∆pk,i  is accepted with probability

φk = e
−∆S τk (2.7.6.1)

where ∆S = S(pk,i) − S(pk, j ) and τk  is a controlling parameter analog to the current tempera-
ture during the cooling and annealing process;  index j  counts the number of successful steps
at a given temperature level k .  The initial temperature τ0 should be a fraction of the initial
objective function S(p0).  If ∆S  is negative, i.e., the objective function is decreased,
Equation (2.7.6.1) yields a probability greater than one and the corresponding step ∆p  is
always accepted as a successful downhill move.  An uphill move ( ∆S  is positive) may also
be accepted, albeit only with probability φk .  This scheme of always taking a downhill step
and sometimes accepting an uphill step with a certain probability, which depends on the
temperature τk , has come to be known as the Metropolis algorithm.  The so-called annealing
schedule describes the reduction of the control parameter τk .  There are two different anneal-
ing schedules available in iTOUGH2:

τk = αkτ0 (2.7.6.2a)

τk = τ0(1 − k / K)
β

(2.7.6.2b)

where 0 < α < 1 and β > 1 are constants, and K  is the total number of iterations.
Furthermore, the standard deviation of the random steps decreases as follows:

σ∆pi( )
k

= K + 10
K + 11( )k

σ∆pi( )
0

(2.7.6.3)

Here, σ∆pi( )
0

 is the standard deviation of the random parameter steps during the first itera-
tion.  Both the temperature τk  and the average step size ∆p  start large and decrease during
the course of the optimization.  Thus, strongly varying parameter sets are tested early in the
inversion, and uphill steps are more likely to be accepted, allowing the minimization algo-
rithm to escape local minima.  Later in the inversion, subtle changes in the parameter set are
tested, and only successful downhill steps are likely to be accepted.  The method of
Simulated Annealing is summarized in Table 2.7.6.1.



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 4 9 THEORY

Table 2.7.6.1.  Minimization by Simulated Annealing

 Step 1: Initialization:
- Set iteration index k = 0 .
- Set trial index i = 1.
- Set counter of successful steps j = 0.
- Define total number of iterations K .
- Define maximum number of trials imax  at each temperature (default: imax = 10n).
- Define initial parameter set pk=0, j=0 = p0.
- Define initial control parameter (temperature) τ0 (default: τ0 = 0.05 ⋅ S(p0) ).

 Step 2: Generate random perturbation ∆pk,i .
The probability density function of ∆pk,i  is either uniform or Gaussian.
The average step size decreases during the optimization (see Step 6).

 Step 3: Perform simulation with pk,i = pk, j + ∆pk,i  and evaluate ∆S = S(pk,i) − S(pk, j ).

 Step 4: If ∆S < 0, accept step, i.e., set pk, j+1 = pk, j + ∆pk,i ;

If ∆S > 0, accept step with probability φk = e
−∆S τk .

If step accepted, set j = j + 1.

 Step 5: If i < imax and j < jmax = imax 5, set i = i + 1 and go to Step 2

 Step 6: Reduce control parameter τk  according to the annealing schedule (2.7.6.2);

Reduce average size of random steps (Equation 2.7.6.3);

Set i = 0; set j = 0; set k = k + 1.

 Step 7: If k < K , go to Step 2.

 Step 8: Minimization terminated.  Proceed with residual analysis.

An advantage of Simulated Annealing is its ability to escape local minima.  However, the
method is inefficient because of the randomness of the trials ∆pk,i , which almost always
propose an uphill step, especially near the minimum or in narrow valleys of the objective
function.  It is therefore suggested to use Simulated Annealing in combination with the other
minimization algorithms discussed above.

RELATED iTOUGH2 COMMANDS

See subcommands of command >>> ANNEAL.
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2 . 7 . 7 Grid Search

Grid search refers to the systematic evaluation of the objective function in the n -
dimensional parameter space.  Parameter sets are either generated on a regular grid in the
parameter space, or can be supplied by the user to examine certain regions using any search
pattern deemed reasonable.

While inefficient and often prohibitive for large numbers of parameters, grid search
provides the complete topography of the objective function, revealing the presence of local
minima, nonuniqueness, instabilities, etc.

RELATED iTOUGH2 COMMANDS

See command >>> GRID SEARCH.

2 . 7 . 8 Stopping criteria

All minimization algorithms presented in Sections 2.7.3 through 2.7.6 are iterative
methods, in which the minimum is approached by proposing new parameter sets that lead to
reduced values of the objective function.  Convergence or stopping criteria must be specified
to decide whether the minimum is identified.  Theoretically, the minimum is detected if all
elements of the gradient vector ∂S ∂pk  are zero.  In practice, however, one of the following
convergence criteria is used to stop optimization:

• The number of iterations (steps), k , exceeds a specified number, K ;
• The number of forward runs exceeds a specified number;
• The number of unsuccessful uphill steps exceeds a specified number;
• The normalized step size is smaller than a specified tolerance;
• The norm of the gradient vector is smaller than a specified tolerance;
• The objective function is smaller than a specified tolerance.

Only the Gauss-Newton and Levenberg-Marquardt algorithms can make use of the crite-
ria related to the gradient.  The objective function is usually substantially reduced during the
first few steps.  Limiting the number of iterations based on experience is thus a reasonable
stopping strategy.

An iTOUGH2 simulation may also stop due to an error or convergence failure in the
forward run, interrupting the optimization process.

RELATED iTOUGH2 COMMANDS

See subcommands of command >> CONVERGE/STOP.
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2 . 7 . 9 Step size limitation and parameter selection

It is sometimes useful to limit the size of the step ∆pk  taken during any one iteration.
Large steps are usually proposed by the second-order methods whenever the sensitivity of a
parameter is small and the parameter is strongly correlated to a parameter with high sensitiv-
ity.  Step-size limitation may also prevent the algorithm from moving too far beyond the
region in which the linearity assumption is justified.

Several strategies for limiting the step size are implemented into iTOUGH2.  They include:

• Limitation of the step size of an individual parameter;
• Limitation of the total step length;
• Limitation of the scaled total step length;
• Automatic parameter selection.

Limitation of the step size of an individual parameter.  A maximum step length can be
specified individually for each parameter.  Figure 2.7.9.1 illustrates that reducing the step
size of parameter i  from ∆p' i to ∆pi,max  also changes the direction of the step taken.
Nevertheless, this approach was found to be superior to one that maintains the original search
direction.
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Figure 2.7.9.1.  Step-size limitation of a single parameter.

Limitation of the total step size.  The size of the scaled or unscaled update vector ∆pk  can
be limited.  The step length of the scaled ( fi = pi , default) or unscaled ( fi = 1) parameter
update vector is defined as follows:
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This is a global step-size limitation as opposed to the one specified for individual parameters.
The scaling is necessary if the concurrently estimated parameters vary considerably in size.
Figure 2.7.9.2 illustrates that limiting the step size maintains the direction of the step taken in
the parameter space.
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p
j

∆p max
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Figure 2.7.9.2.  Global step-size limitation.

Automatic parameter selection.  If a parameter is not sensitive enough to be estimated
from the available data at a given iteration, it should be removed from the set of parameters
being updated.  Parameters that are (temporarily) removed from the parameter set remain at
their current value, which is equivalent to setting the maximum step size for these parameters
to zero.

The parameter set is screened according to two selection criteria.  Only the most sensitive
and/or most independent parameters are subjected to the optimization process.  The sensitivity
criterion examines the potential of parameter j  to reduce the objective function.  It is defined
as follows:

δ j = ∆S (2.7.9.2)

Here, ∆S  is the change of the objective function if the parameter is perturbed by a small
value.  Normalizing to the maximum value δmax = max(δ j )  yields the selection criterion ω :

ω j =
δ j

δmax
0 < ω j ≤ 1 (2.7.9.3)

Those parameters with ω  larger than a predefined value ωmin , i.e., the most sensitive
parameters, are selected.  Parameters that are unable to significantly reduce the objective
function are (temporarily) excluded from the optimization process.  As an option, the selec-
tion criterion ωmin  can be relaxed with each iteration k :
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ωmin,k = ωmin ⋅ 1 − k
K( ) (2.7.9.4)

Equation (2.7.9.4) reaches zero for the last iteration K , i.e., all parameters are selected for
the final step.

The second selection criterion examines the ratio between the apparent conditional stan-
dard deviation ′σp  and the marginal standard deviation σp  as a measure of overall parameter
correlation:

Γ j = ′σpj

σpj

0 < Γ j ≤ 1 (2.7.9.5)

The calculation of σp  and ′σp  is described in Section 2.8.4.  Those parameters with a ratio
larger than Γmin , i.e., the most independent parameters, are selected.  Strongly correlated
parameters are (temporarily) excluded from the optimization process.  As an option, the
selection criterion Γmin  can be relaxed with each iteration k :

Γmin,k = Γmin ⋅ 1 − k
K( ) (2.7.9.6)

Equation (2.7.9.6) reaches zero for the last iteration K , i.e., all parameters are selected for
the final step.  The standard deviations used in Equation (2.7.9.5) cannot be interpreted as
actual estimation uncertainties because they are not evaluated at the minimum.

Due to the nonlinearity of the inverse problem at hand, sensitivity coefficients and
parameter correlations change during the optimization.  Therefore, the selection criteria must
be reevaluated from time to time, i.e., parameters may be deactivated and reactivated during
the course of an inversion.

Automatic parameter selection makes the inversion faster because fewer parameters must
be perturbed for calculating the Jacobian matrix (the full Jacobian is only calculated every few
iterations when the selection criteria are reevaluated).  The inversion is usually also more
stable.  Parameters that are not sensitive or highly correlated tend to be changed drastically
during an iTOUGH2 iteration, causing unnecessary numerical difficulties.

RELATED iTOUGH2 COMMANDS

Steps of individual parameters are limited using command >>>> STEP in the parame-
ter definition block.  Global step limitation is invoked using command >>> STEP in block
> COMPUTATION, with the keyword UNSCALED indicating that scaling should be omit-
ted.  Command  >>> SELECT implements automatic parameter selection, and its subcom-
mands define the selection criteria.



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 5 4 THEORY

2.7.10  Example

Figure 2.7.10.1 shows the contours of the objective function—the byproduct of a grid
search—and the solution paths for the four minimization algorithms described in Sections
2.7.3 through 2.7.6.  The inverse problem solved in the example is described in Finsterle
[1999c; Problem 1].  The search area was confined to the region shown in the figure.  With
the exception of the Gauss-Newton algorithm, which is misguided by its linearity assump-
tion, the global minimum is accurately identified by all algorithms.  The Levenberg-
Marquardt algorithm is the most efficient method for this problem.  Notice that the strategy
underlying each method is clearly revealed by the solution path taken.
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Figure 2.7.10.1.  Solution paths of (a) Gauss-Newton, (b) Levenberg-Marquardt, (c)
Downhill Simplex, and (d) Simulated Annealing minimization algorithms in the two-dimen-
sional parameter space porosity–log(permeability).  The square, circle, and cross indicate,
respectively, the starting point, endpoint, and global minimum.
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2 . 8 Sensitivity and Error Analysis

2 . 8 . 1 Introduction

One of the key advantages of a formalized approach to parameter estimation is the
possibility to perform an a posteriori error analysis.  The sensitivity matrix evaluated at the
minimum of the objective function contains much information regarding the impact of the
parameters on the system behavior, and how valuable certain data were for the solution of the
inverse problem at hand.  The residual analysis provides some measure of the overall good-
ness-of-fit, and identifies systematic errors, trends in the model, or outliers in the data.
Next, we can determine the uncertainty of the estimated parameters.  Note that a good match
does not necessarily mean that the estimates are reasonable.  They may be highly uncertain
due to high parameter correlation, which is usually an indication of overparameterization.
The covariance matrix of the estimated parameters can be further analyzed to obtain correla-
tion coefficients and parameter combinations that lead to similar matches.  Model identifica-
tion criteria provide a measure to compare the performance of alternative models with a
different model structure.  Finally, the uncertainty of model predictions can be calculated
using either linear error propagation analysis or Monte Carlo simulations.

2 . 8 . 2 Sensitivity analysis

The sensitivity coefficients Equation (2.7.2.4) show the impact of a small parameter
change on the calculated system behavior at the calibration point.  They can also be inter-
preted as a measure of the relative contribution of the corresponding data point to the solution
of the inverse problem.  As Equation (2.8.4.2) below reveals, the higher the absolute value
of the sensitivity coefficient, the lower the estimation uncertainty of the corresponding
parameter.  High sensitivity is, however, a necessary but not sufficient condition for mean-
ingful parameter estimation (see Finsterle and Persoff [1997]).

In order to make sensitivity coefficients comparable with one another, it is suggested to
scale them by the a priori standard deviation of the observation, σz , and the expected parame-
ter variation, σp :

J̃ij = Jij

σpj

σzi

= ∂zi
∂pj

⋅
σpj

σzi

(2.8.2.1)

where Jij  is an element of the Jacobian matrix, Equation (2.7.2.4).  The scaling is necessary
because the parameters concurrently estimated by inverse modeling may have different units
and vary by orders of magnitude.  The same is true for the different observation types used
for calibration.  Unlike Jij , the scaled sensitivity coefficients J̃ij  are dimensionless.

The scaling of the sensitivity coefficients allows one to directly compare the contribution
of each data point to the estimation of each parameter, and to evaluate a number of composite
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sensitivity measures.  Equation (2.8.2.1) indicates that the more accurate a measurement is,
the higher its contribution to the solution of the inverse problem.  A data point is also consid-
ered more valuable if the parameter to be estimated is expected or allowed to be uncertain.

Four sums of absolute, scaled sensitivity coefficients are calculated in iTOUGH2.  The
first sum consists of the absolute values of the elements within each row of the scaled
Jacobian matrix:

ai = J̃ij
j=1

n

∑ (2.8.2.2)

The quantity ai  is a relative measure of how important data point i  is for the estimation of all
parameters of interest.  Comparing the ai  values enables identification of those data points in
space and time that are most valuable.

By adding all the coefficients belonging to the same data set (e.g., a time series of
pressure measurements at a certain location), the contribution of this data set  k = 1,K, K ≤ m
to the estimation of parameter j  can be quantified as follows:

bkj = J̃ij
i∈k

i=1

m

∑ (2.8.2.3)

The overall contribution of a certain data set to the solution of the inverse problem at hand
is given by

ck = J̃ij
i∈ki=1

m

∑ = ai i∈k
i=1

m

∑ =
j=1

n

∑ bkj
j=1

n

∑ (2.8.2.4)

A comparison of ck  values shows whether a certain data set was worth collecting, or whether
the position of measurement points should be changed (in space and/or time), or whether the
accuracy of the corresponding sensor must be improved to make it a valuable source of
information, comparable with the contribution from other observations.

Finally, building the sum of each column provides a relative measure of parameter sensi-
tivity, taking all available observations into account:

dj = J̃ij
i=1

m

∑ (2.8.2.5)

A parameter with a high dj  value is more likely to reach an estimation uncertainty of σpj
than a parameter with a lower dj  value.  Again, this neglects the impact of parameter correla-
tions on the estimation uncertainty, which cannot be assessed by a simple sensitivity analy-
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sis, but must be evaluated by actually inverting the data and calculating the estimation covari-
ance matrix, Equation (2.8.4.2).  If the sensitivity analysis is performed to assess the impact
of a parameter on the model predictions, the parameter with the highest dj  value is the most
important one, i.e., one should try to determine it as accurately as possible.

The sensitivity measure dj  must be distinguished from δ j  (Equation 2.7.9.2), which
examines the sensitivity of the objective function (not the model output) to a change of the
parameter:

δ j = ∆S (2.8.2.6)

Here, ∆S  is the change of the objective function if the parameter is perturbed by a small
value.  The objective function can be best reduced by updating parameters with a large δ j
value.

The sensitivity coefficients, the scaled sensitivity coefficients, and the composite sensi-
tivity measures—Equations (2.8.2.2) through (2.8.2.5)—are useful to design an experiment,
to analyze inverse modeling results, and to study the impact of parameters on selected model
predictions.  The interpretation of these measures changes depending on the purpose of the
sensitivity analysis.  If evaluated prior to data collection, they help optimize the design of an
experiment by identifying the most appropriate observation types and the necessary
measurement accuracy.  Furthermore, measurement locations with large sensitivities data can
be selected as well as time windows that contain valuable data.  Since the sensitivity
coefficients depend on the (unknown) parameter set itself, the analysis must be repeated with
different assumptions about the system properties.  An example is described in Finsterle and
Faybishenko [1999].

The scaled sensitivity matrix and the various composite sensitivity measures—rows and
columns labeled with “ ∑ ”—are shown in Figure 2.8.2.1.
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Figure 2.8.2.1.  (a) Scaled sensitivity matrix and (b) composite sensitivity measures.

RELATED iTOUGH2 COMMANDS

By default, iTOUGH2 prints the dimensionless, scaled sensitivity matrix with elements
given by Equation (2.8.2.1) along with the composite sensitivity measures (2.8.2.2) through
(2.8.2.6).  In order to also print the (unscaled) sensitivity matrix, command
>>> SENSITIVITY (o) must be used.
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2 . 8 . 3 Estimated error variance and Fisher Model Test

The a posteriori or estimated error variance represents the variance of the mean weighted
residual and is thus a measure of goodness-of-fit [Larsen and Marx, 1986]:

s0
2 = r

T
Czz

−1
r

m − n (2.8.3.1)

If the model does not match the data sufficiently well, i.e., s0
2 is too large, then the

estimated parameters are meaningless, because the underlying model is erroneous.  On the
other hand, obtaining a good match does not guarantee that the inverse problem is solved in a
reasonable way; the results must be subjected to a critical residual analysis.  The model
identification criteria discussed in Section 2.8.6 therefore not only contain a goodness-of-fit
measure such as the estimated error variance, but also additional terms to prevent
overparameterization.  A more detailed discussion of these points can be found in Finsterle
and Persoff [1997].

If the residuals are consistent with the distributional assumption about the measurement
error, which is expressed through covariance matrix Czz , then the estimated error variance
assumes a value close to one.  The a posteriori error variance s0

2 can be considered an
estimate of the a priori error variance σ0

2 (see Equation 2.5.3.2) with a degree of freedom of
(m − n) .  It can be shown [Larsen and Marx, 1986] that the ratio s0

2 σ0
2  follows an F -

distribution with the two degrees of freedom f1 = m − n  and f2 = ∞.  We can therefore
statistically test whether the average match deviates significantly from the modeler’s expecta-
tions.

Table 2.8.3.1 shows the Fisher Model Test, in which the significance of a deviation from
σ0

2 is tested.  If the estimated error variance is significantly larger than σ0
2, there is likely to

be an error in the functional model, or the assumption about the measurement errors were too
optimistic.  The Fisher Model Test is only indicative of modeling errors if the stochastic
model is well defined.  Otherwise, s0

2 can only be considered a relative measure of goodness-
of-fit.  The second column in Table 2.8.3.1 is the value to be used for scaling the covariance
matrix of the estimated parameters (see Section 2.8.4).

Table 2.8.3.1.  Fisher Model Test

Fisher Model Test Error Variance Comment

Fm−n,∞,1−α < s0
2 σ0

2
s0

2
Error in functional and/or stochastic model

1 ≤ s0
2 σ0

2 ≤ Fm−n,∞,1−α s0
2

Model test passed

s0
2 σ0

2 < 1 σ0
2

Error in stochastic model
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Equation (2.8.3.1) can also be used to iteratively adjust the relative contributions of
different data types (pressures, temperatures, saturations, flow rates, prior information, etc.)
to the objective function.  The relative weight assigned to each observation type is given by
the ratio λkl = τk τl , where τ  is a scalar analog to σ0

2 such that Czz,k = τkVzz,k  (see also
Equation 2.5.3.2).  Here, Czz,k —a submatrix of Czz—is the covariance matrix of all obser-
vations of type k , and Vzz,k  is a positive-definite matrix.  By default, τk  is fixed at 1.  If
relative weights are not well known, λkl  can be updated in an iterative process, where τk  is
recalculated every few iterations according to

τk =
rk

T
Czz,k

−1
rk

mk − n (2.8.3.2)

This procedure is similar to that referred to as iterated re-weighted least squares [Haining,
1990].  The process assigns weights such that the relative contribution of each observation
type to the objective function approaches 1 / K , where K  is the number of observation types
used in the inversion.  The Fisher Model Test becomes meaningless if λ  is updated during
the inversion because the test will be fulfilled by definition.

RELATED iTOUGH2 COMMANDS

The multiplication factor shown in the second column of Table 2.8.3.1 can either be
specified using commands >>> A PRIORI and >>> A POSTERIORI, or automatically
selected by using command >>> FISHER.  The confidence level is specified using
command >>> ALPHA.  Command >>> TAU invokes the iterative reweighting of differ-
ent observation types according to Equation (2.8.3.2).
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2 . 8 . 4 Covariance matrix of estimated parameters

The best-estimate parameter set p̂ was determined by matching the model to a specific
data set.  Because the data have a random component—the measurement errors (see Section
2.5.2)—the actually observed data set can be considered to be one realization of a universe of
potentially observed data sets.  Consequently, the estimated parameter vector p̂ represents
only one point of a probability distribution in the n -dimensional parameter space of all
possible parameter vectors determined by matching the hypothetical data sets.  The goal is to
find an approximation of this probability distribution despite the fact that the true parameter
vector p̃ is unknown, and that only one data set is available for inversion.

The covariance matrix of the estimated parameters, Cpp , contains the standard errors or
uncertainties of the estimates p̂, as well as the covariances, which describe the statistical
correlations between pairs of parameters.  Cpp  is an approximation of the probability distri-
bution of p̂ − p̃.  Given a best-estimate parameter set p̂ and the corresponding covariance
matrix Cpp , one can determine the confidence region around p̂, which should contain the
true parameter set with a certain level of confidence.

We first present the statistical concept that provides the basis of the interpretation of
estimation covariance matrices.  This discussion uses a thought experiment with multiple
realizations of the data to arrive at the distribution of the parameter estimates, for which
arbitrary confidence regions can be derived using simple statistics.  In the second part of this
section, we look at the more realistic situation, where there is only one data set available for
parameter estimation, yielding only one best-estimate parameter set.  Consequently, the
covariance matrix is in itself an estimate, which needs to be based on a linearity and normality
assumption, leading to ellipsoidal confidence regions.  Note that the calculation of the confi-
dence region is fundamentally different in the two cases, the first providing a theoretical
justification for using the second.  The interpretation of the covariance matrix Cpp  and its
relation to a confidence region will be discussed in detail, followed by some thoughts about
the underlying linearity assumption.

Figure 2.8.4.1 illustrates the situation for a case described in Finsterle and Najita [1998].
200 synthetic data sets were generated with different random measurement errors.  These
data sets were then inverted individually, yielding 200 estimates of porosity φ  and initial gas
saturation Sgi .  The individual estimates are shown as triangles in the two-dimensional
parameter space.  The mean of the estimates p , shown as a square, is very close to the true
parameter set of φ = 0.35 and Sgi = 0.30.  The covariance matrix of the cloud of triangles is
visualized as a dash-dotted ellipse with the center point at p .  In practice, only one data set is
available, yielding a single estimate p̂ , shown as a circle.  The solid ellipse with center at p̂
represents the 95% confidence region around p̂, as inferred from Cpp  (see Equation
(2.8.4.2) below).  It is similar in size and orientation to that representing the probability
distribution of p̂ − p̃, and it contains the true parameter set on the 95% confidence level.

In Figure 2.8.4.1, the full probability distribution—the cloud of triangles—was assumed
to be accurately represented by an elliptical confidence region, and an ellipse was drawn
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around the best estimate p̂.  The choice of an elliptical confidence region is based on a
normality and linearity assumption, which will be critically reviewed later in this section.  A
quantitative relationship among the value of the objective function at the minimum, Smin, the
covariance matrix Cpp , and the confidence level can only be accurate if (1) the measurement
errors are normally distributed, and (2) the estimation uncertainty is small enough so that the
nonlinear model can be replaced by a suitable linearized model within the confidence region.
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Figure 2.8.4.1.  Probability distribution of estimates in a two-dimensional parameter
space.  Triangles represent solutions from 200 least-squares fits to hypothetical data sets.
The square indicates the mean of all solutions.  The solid ellipse is an approximation of the
estimation uncertainty of a single best-estimate parameter set, shown as a circle.

We now discuss the case of estimating Cpp  if only one data set is available for inversion.
Under the assumption of normality and linearity, the 100(1 − α )% confidence region contains
those values p for which [Donaldson and Schnabel, 1987]

S(p) − S(p̂) ≤ s0
2 ⋅ n ⋅ Fn,m−n,1−α (2.8.4.1)

where p̂ is the vector holding the optimum parameter set, s0
2
 is the estimated error variance,

Equation (2.8.3.1), and Fn,m−n,1−α  is a quantile of the F -distribution.  Here, α  is the prob-
ability that the hypothesis stated above is rejected even though it is true.  In the general case,
this confidence region is of arbitrary shape; it is reasonable, however, to bound it by the
points of constant likelihood, i.e., a contour of the objective function for maximum likelihood
estimates.  Near the minimum, where the linearity assumption holds, the confidence region is
ellipsoidal, which makes it inexpensive to construct and easy to report.  For a maximum like-
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lihood estimator, the covariance matrix of the estimated parameters is asymptotically given by
the inverse of the curvature or Fisher information matrix (JTCzz

−1J) , multiplied by the esti-
mated error variance s0

2
:

Cpp = s0
2

J
T
Czz

−1
J( )−1

(2.8.4.2)

Equation (2.8.4.2) can be derived by inserting Equation (2.7.3.1) into the definition of a
covariance matrix, Cpp = E[(p − E[p])(p − E[p])T ], where E[] denotes the expected value.

The interpretation of the covariance matrix Cpp  provides the key criteria for evaluating
inverse modeling results.  The diagonal elements of Cpp  contain the variances of the
estimated parameters, σp

2 .  They are a measure of how uncertain the estimate is given the
uncertainty of all the other, concurrently estimated parameters.  Note that they are directly
proportional to the overall goodness-of-fit expressed by s0

2.  The higher the quality of the
data and the better the fit, the more accurate the estimates.  Furthermore, estimation uncer-
tainty is inversely proportional to the absolute size of the sensitivity coefficients.  The more
sensitive the calculated system response at the calibration point, the more information
contained in the data regarding the parameters of interest.  Since the sensitivity coefficients
can be evaluated without actually collecting data, the design of an experiment can be
optimized a priori by looking for observation types as well as measurement points in space
and time that yield large sensitivity coefficients.

The off-diagonal elements of Cpp  are the covariances cij .  Correlations among the
parameters are a result of a conjoint impact of parameter changes on the system behavior.
The correlation coefficient is given by

rij =
cij

σpi

2 ⋅ σpj

2( )1 2 − 1 ≤ rij ≤ 1 (2.8.4.3)

Correlation coefficients assume values between -1 and 1; a value of zero indicates no statisti-
cal correlation between parameter i  and j ; a value close to -1 or 1 indicates a strong correla-
tion, i.e., the two parameters cannot be determined independently.  For example, if two
parameters are negatively correlated, a similar system response is obtained by concurrently
increasing one and decreasing the other parameter.  In an inversion involving three or more
parameters, the correlation coefficients are usually difficult to interpret from a physical point
of view because of indirect parameter dependencies.  Two parameters may exhibit a statistical
correlation even though they are not physically related.  The non-zero correlation coefficient
is a result of the fact that both parameters are correlated to a third parameter.  Such a case is
described in Finsterle [1999c; Problem 2].

iTOUGH2 also prints a matrix of “direct” correlations between pairs of parameters.  Direct
correlation coefficients are calculated by taking the n × n curvature matrix (JTCzz

−1J) , copying
the intersections of the two rows and columns corresponding to the two parameters of interest
into a 2 × 2 matrix, inverting this matrix, and applying Equation (2.8.4.3).  This procedure is
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repeated for all n(n − 1) / 2 parameter pairs.  The resulting direct correlation coefficient matrix
is easier to interpret on the basis of a physical understanding of the system, i.e., it indicates to
which degree a change in one parameter can be compensated by a change in the other
parameter.

Even though certain pairs of parameters may exhibit preferential correlation structures,
correlations are not intrinsic features of parameter combinations.  They obviously depend on
the data available and also on the number of simultaneously estimated parameters, because
indirect correlations may overwhelm the direct correlations.

If correlations exist, the uncertainty of one parameter does affect the uncertainty of the
other parameter.  The diagonal elements of Cpp  account for this fact.  The standard deviation
from the joint probability density function, σp , is also termed marginal standard deviation as
it measures the uncertainty of a parameter without regard to the value of the other parameters.
It must be distinguished from the conditional standard deviation, σp' , which measures the
uncertainty of a parameter assuming that all the other parameters are either precisely known or
uncorrelated.  The conditional standard deviation of parameter i  is the reciprocal of the i th
diagonal element of the scaled curvature matrix F = s0

−2(JTCzz
−1J).  The conditional standard

deviation is always smaller than the marginal standard deviation (see Figure 2.8.4.2 below).
Note that each joint confidence region can be interpreted as a conditional confidence region of
a higher-order parameter set, i.e., the uncertainty estimates are always optimistic because they
neglect the influence of all the parameters that are fixed despite being uncertain.  The ratio

Γi = ′σpi

σpi

0 < Γi ≤ 1 (2.8.4.4)

can be interpreted as an overall measure of how independently parameter i  can be estimated.
Small values of Γ  usually indicate that the uncertainty σp  of a parameter could be reduced by
lowering its correlation to other parameters.  Test design should aim at obtaining high Γ
values.

Figure 2.8.4.2 illustrates the elliptical (or hyperellipsoidal if n > 2) region that represents
the covariance matrix.  It can be constructed from the eigenvalues and eigenvectors of Cpp .
The length of the semiaxis are the square roots of the eigenvalues, and their orientations are
given by the corresponding eigenvectors.  Parameter combinations along the eigenvector with
the largest eigenvalue lead to a similar system response and are thus difficult to identify.
Additional measures of the overall size of the ellipsoid are given in Section 2.8.6.

The linearization approach assumes that the nonlinear model can be adequately approxi-
mated by linear functions at the solution.  Thus, the actual, nonellipsoidal confidence region
(see Equation 2.8.4.1) can be approximated by a region consisting of those values p for
which

(p − p̂)
T

Cpp
−1

(p − p̂) ≤ n ⋅ Fn,m−n,1−α (2.8.4.5)
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The approximation of the actual confidence region, which is the contour of the objective
function on level S(p̂) + s0

2 n Fn,m−n,1−α , by an ellipsoidal confidence region is visualized in
Figure 2.8.4.3a.  In this case, the linearization leads to a slight overprediction of the size of
the confidence region along its longest axis.  The probability that all parameters are within the
standard ellipsoid (i.e., the joint probability) is much less than 68.3% (the probability for a
single parameter); it gets smaller with increasing n  and decreasing m .

 p1

 p2

 
∧
p1

 
∧
p2

 σp
1

 e1

 e2

 σp
2

 σ'p
1

 σ'p
2

Figure 2.8.4.2.  Visualization of estimation covariance matrix as an elliptical confidence
region, indicating marginal and conditional standard deviations.
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Figure 2.8.4.3.  Original (a) and corrected (b) approximation of the confidence region.
The ellipses approximate the contours of the objective function (dashed) at the minimum.
The solid contour represents the actual confidence region.  The arrow indicates the solution
path taken by the minimization algorithm.
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A 100(1 − α )% confidence interval for p̃i  contains those values pi  for which

pi − p̂i ≤ σpi
⋅ tm−n,1−α /2 (2.8.4.6)

where tm−n,1−α /2  is the quantile of the Student t-distribution.  The confidence regions and
confidence intervals introduced here are only exact for normally distributed errors and linear
models.  If the errors are not normally distributed, the covariance matrix has no clear quanti-
tative interpretation.  Furthermore, if the model is nonlinear, the coverage of the confidence
region by the ellipsoidal approximation may be poor.  Reparameterization, such as logarith-
mic transformation of some of the parameters, is a possibility to reduce nonlinearity effects.

Carrera [1984] proposed a procedure that adjusts the size of the hyperellipsoid to account
for nonlinearities, assuming that the orientation is accurately obtained from the linear error
analysis.  The result of the correction procedure is still a covariance matrix, i.e., it can be
interpreted in the usual manner and is easy to report.  The method is based on a comparison
of the actual objective function with the results from the linear approximation at discrete
points in the parameter space.  These test points 

(
p are located at the end of the main axis of

the hyperellipsoid, i.e. [Finsterle and Pruess, 1995]:

(
pi± = p̂ ± (n⋅ Fn,m−n,1−α )

1/2
ai ui i = 1,L,n (2.8.4.7)

Here, 
(
pi±  are two test parameter sets on the i th axis, the direction of which is given by the

eigenvector ui  of covariance matrix Cpp .  The distance from the optimal parameter set p̂ is
selected as a multiple of the corresponding eigenvalue ai

2  and the quantile of the F -distribu-
tion.  This means that the correction is tailored to approximate the confidence region on a
certain confidence level 1 − α .  The eigenvalues ai

2 , which determine the length of the semi-
axes, are corrected as follows:

a' i
2 = ai

2
s0

2 A+ + A−
2





 i

(2.8.4.8)

with

  
A±i =

n ⋅ Fn,m−n,1−α
S(

(
pi±) − S(p̂)

(2.8.4.9)

Finally, the new covariance matrix, Cpp
' , is calculated from the original eigenvectors ui  and

the updated eigenvalues a' i
2:

Cpp
' = UTD' U (2.8.4.10)

where D'  is a diagonal matrix consisting of the corrected eigenvalues, and U  is the modal
matrix, formed by the n  eigenvectors as its columns.  This correction procedure requires 2n
additional solutions of the direct problem and is thus relatively inexpensive.  While the result-
ing confidence region is ellipsoidal by definition, the differences between S(

(
pi+)  and S(

(
pi−)



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 6 7 THEORY

provide—as a byproduct of the correction procedure—some insight into the asymmetry of
the true confidence region.  The corrected covariance matrix is rendered in Figure 2.8.4.3b.
The endpoints of the semiaxes match the actual confidence region on the 95% confidence
level reasonably well .

RELATED iTOUGH2 COMMANDS

The covariance matrix of the estimated parameters, Equation (2.8.4.2), is evaluated by
default.  Command >>> LINEARITY checks the linearity assumption of the error analysis
using Equations (2.8.4.7) through (2.8.4.10).
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2 . 8 . 5 Residual analysis

Minimizing the objective function leads to the best-estimate parameter set for a given
functional and stochastic model.  However, this does not imply that the real system is prop-
erly represented by the model.  If the conceptual model fails to reproduce the salient features
of the system, the calibrated model may not be able to match the observed data as expected,
where the expectation regarding the attainable fit is reflected in the a priori covariance matrix
Czz .  A first and rather crude assessment of the match is the Fisher Model Test described in
Section 2.8.3.  However, a more detailed analysis is required to reveal potential trends in the
residuals, indicating that there is a systematic error in the model or the data.  In general, an
inspection and detailed analysis of the residuals are used in pointing towards aspects of the
model that need to be modified.  In addition, large residuals (outliers) may be detected by
visual inspection, or by use of a more rigorous approach based on mathematical statistics.
Note that if the statistics of the residuals significantly deviate from normal, the estimates are
likely to be biased, and the formal error analysis (which establishes quantitative relationships
among the objective function, the covariance matrix, and the confidence level) is not valid.

A trend in the residuals is usually immediately identified by visual inspection of a scatter
plot of the residuals, which is printed to the iTOUGH2 output file.  A moment analysis is
performed on the residuals of each data set, each observation type, and all scaled residuals.
First, the mean and variance are calculated:

r = 1
M ri

i=1

M

∑ (2.8.5.1)

VAR = 1
M − 1 ri − r( )2

i=1

M

∑ (2.8.5.2)

Here, ri  is the residual from a certain data set or certain observation type, respectively, and
M ≤ m  is the number of such residuals.  The mean of the residuals is expected to be close to
zero, and the variance should be consistent with that specified by the prior covariance matrix.
A large positive (negative) mean indicates that data are systematically underpredicted
(overpredicted) by the model.  Notice that the variance (2.8.5.2) is not the variance of the
residuals themselves, but the variance of the residuals about the mean residual r .  A large
variance either indicates that the data were noisier than expected, or that there is a trend in the
residuals.  Taking the ratio of the mean (bias) and the standard deviation SDEV = VAR  of
the residuals provides a measure of whether the bias is acceptable; the ratio r SDEV  should
be close to zero.

The third moment or skewness characterizes the degree of asymmetry of the distribution:

SKEW = 1
M

ri − r
SDEV







3

i=1

M

∑ (2.8.5.3)
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A positive (negative) skewness signifies an asymmetric tail extending to more positive
(negative) residuals.

The fourth moment or kurtosis measures the peakedness or flatness of the distribution
relative to the Gaussian distribution:

KURT = 1
M

ri − r
SDEV







4

i=1

M

∑











− 3 (2.8.5.4)

where the -3 term makes the value zero for a normal distribution.  A distribution with positive
(negative) kurtosis is relatively peaked (flat).

The mean and especially the higher moments are statistics that are not robust in the sense
discussed in Section 2.6.5.  A more robust estimator of the center of the distribution is the
median, which is defined as the quantity for which larger and smaller values are equally
probable.

)
r =

r(M+1)/2
0.5 ⋅ rM /2 + rM /2+1





for M odd
M even (2.8.5.5)

An estimator of the width of the distribution around the median is given by the mean
absolute deviation:

  
ADEV = 1

M ri − )
r

i=1

M

∑ (2.8.5.6)

A large difference between the mean and the median or the standard deviation and the mean
absolute deviation is indicative of a robustness problem, i.e., the distribution is likely to be
heavy-tailed and asymmetric, or the residuals contain outliers.  The mean used in Equation
(2.8.5.2) minimizes the variance, whereas the median used in Equation (2.8.5.6) minimizes
the mean absolute deviation.

Note that the moment analysis is performed on the residuals themselves, i.e., not the
residuals weighted by the measurement error.  This fact may affect the conclusions if largely
different standard deviations are assigned to data belonging to the same data set or same
observation type.  iTOUGH2 also performs a moment analysis on all weighted residuals.
This analysis should yield a mean close to zero and a variance close to s0

2 (see Equation
2.8.3.1).

A plot of the calculated versus the observed system response should show points
distributed closely around the diagonal line.  In iTOUGH2, a linear regression analysis is
conducted on the scatter plots, individually for each data set.  An intercept of zero and a slope
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of one are expected.  Note that the linear regression analysis does not properly account for
differences in measurement quality within a data set.  Furthermore, the smaller values have a
higher influence on the intercept estimate, and small and large values determine the slope
more strongly than intermediate values.  Consequently, the results of this analysis should be
interpreted with care.  An example of the linear regression analysis is discussed in Finsterle
[1999c; Problem 6].

In order to further analyze the residuals, it is necessary to estimate the uncertainty of the
calculated system response.  As will be discussed in Section 2.8.7, the covariance matrix of
the model prediction is given by

Cẑẑ = JCppJ
T

(2.8.5.7)

The square-root of the diagonal element of Cẑẑ  is the standard deviation of the model predic-
tion.  Note that the standard deviation of the calculated system response is always smaller
than that of the corresponding measurement (i.e., σẑi

< σzi
).  This is because the model

prediction at a given point is inferred not only from the corresponding data point, but also
from all the other observations.

The covariance matrix of the residuals is given by [Weisberg, 1980]

Crr = Czz − Cẑẑ (2.8.5.8)

The elements of Crr  depend on the number and location (i.e., correlation) of the observation
points and their sensitivities to the model parameters; they do not depend on the actually
measured value.

Next, we calculate a measure termed local reliability or partial redundancy [IGP, 1990]:

yi =
σri

2

σzi

2 =
σzi

2 − σẑi

2

σzi

2 = 1 −
σẑi

σzi







2

(2.8.5.9)

The local reliability realizes values between zero and one.  It is a measure of how much a data
point is controlled by redundant observations.  If yi  is close to zero, even a large error in the
corresponding data point zi * cannot be detected.  A yi  value close to one indicates a well-
controlled observation.  Adding more observation points in the vicinity of this measurement
may improve the accuracy, but does not improve the reliability of the inverse modeling
system.  In other words, yi  can also be considered a measure of the degree of redundancy.

Observations with yi  values smaller than about 0.25 are considered poorly controlled;
values greater than 0.75 indicate a high degree of redundancy.  For a given configuration, a
relatively uncertain measurement is better controlled than an accurate measurement.  Note that



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 7 1 THEORY

yi  can be evaluated a priori and can therefore be used to improve the design of an experi-
ment.

The normalized or Studentized residual [Weisberg, 1980]

wi = ri
σri

(2.8.5.10)

is a normally distributed random variable with zero mean and a variance of one.  Hence, the
size of a residual can be statistically tested to see whether it is acceptable or a potential outlier.
If wi > u1−α , where u1−α  is the quantile of the standard normal distribution on the 1 − α
confidence level, then the corresponding residual is likely to be an outlier and should be
discarded; the risk of discarding a correct data point is α .  The assumption that the
normalized residuals follow a normal distribution is an approximation considered acceptable.
This test is based on the assumption that multiple large errors do not cancel each another.
Note that the wi -test checks each observation individually, whereas the Fisher Model Test
described in Section 2.8.3 is based on the ensemble of all measurements.

The probable size of the error depends on the local reliability and is given by

gi = − ri
yi

(2.8.5.11)

For a poorly controlled observation, the size of the actual error can be significantly larger
than the residual.

The following two equations can be used to check the numerical accuracy of the residual
analysis [Weisberg, 1980]:

σẑi

σzi







2

= n
i=1

m

∑ (2.8.5.12)

yi = m − n
i=1

m

∑ (2.8.5.13)

Finally, the relative contribution of each data point, each data set, and each observation
type to the objective function may be used to identify errors in portions of the data or the
model.  Since the objective function is built using the weighted residuals, an imbalance in
these contributions may also signify an error in the stochastic model.
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2 . 8 . 6 Optimality and model identification criteria

The previous sections dealt with statistical measures that assess the results of a single
inversion.  In this section, a number of additional criteria are given, which allow comparison
of different inversions—for example, calibrating against different data sets, estimating differ-
ent parameters, or using a different conceptual model.  If competing models have been devel-
oped and matched to the data, a criterion is needed to decide which of the alternatives is
preferable.  A number of tests for model discrimination have been developed as described by
Steinberg and Hunter [1984], Carrera and Neuman [1986a], and Russo [1988], Russo et al.
[1991].

One of the most widely used criteria is the estimated error variance as a measure of
goodness-of-fit (see Section 2.8.3).  The model that best matches the data is considered to be
the best.  However, since the match can always be improved by adding more fitting parame-
ters, the goodness-of-fit is an inappropriate basis for model selection because it almost
always leads to overparameterization.  Overparameterization means that an improvement of
the fit comes at the expense of a reduction in model reliability.  Increasing the number of
parameters also increases the correlations among the parameters, which results in higher
estimation uncertainties if the match is not significantly improved.  Consequently, model
identification and optimality criteria should include some aggregate measure of overall
estimation uncertainty to guard against overparameterization.

The first group of criteria includes quantities that measure the overall size of the estima-
tion covariance matrix Cpp .  A key objective of parameter estimation by inverse modeling is
to reduce the uncertainty of a set of parameters considered important for the subsequent
model prediction.  Therefore, a measure of overall parameter uncertainty can serve as a crite-
rion to compare the performance of competing test designs or alternative inversions.  The in-
version realizing the smallest value is considered superior.  There are three scalar measures of
Cpp  one might use as design evaluation or optimality criteria [Steinberg and Hunter, 1984]:

A − optimality = trace Cpp( ) (2.8.6.1)

E − optimality = max eigenvalue Cpp( ) (2.8.6.2)

D − optimality = det Cpp( ) (2.8.6.3)

A-optimality consists of minimizing the trace of Cpp , i.e., it minimizes the sum of all
parameter uncertainties.  E-optimality seeks minimization of the maximum eigenvalue of
Cpp .  As discussed in Section 2.8.4, the maximum eigenvalue represents the largest axis of
the hyper-ellipsoid, i.e., the length of the vector in the parameter space that is associated with
the largest estimation uncertainty.  Taking the determinant of Cpp  yields the so-called D-
optimality objective for design evaluation.  The design with the smallest value minimizes the
area of the joint confidence region around the parameter estimates.
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If vector p contains parameters of different types and orders of magnitude, matrix Cpp
should be appropriately scaled before evaluating the optimality criteria.  The elements of the
scaled covariance matrix are defined as follows:

c' ij =
cij

pi ⋅ pj
(2.8.6.4)

Recall that Cpp  is directly proportional to the overall goodness-of-fit expressed by s0
2 or—in

the case of design calculations—the expectation thereof.

Carrera and Neuman [1986a] have introduced the Akaike Information Criterion (AIC) and the
Kashyap criterion [Kashyap, 1982].  For normally distributed residuals, AIC can be written
as:

AIC = (m − n)s0
2 + ln Czz + m ⋅ ln(2π) + 2n (2.8.6.5)

where •  indicates the determinant of the corresponding matrix.  The AIC takes into account
both goodness-of-fit and parsimony of the model.  The first term is the objective function,
the second and third terms measure the uncertainty of the data, and the last term penalizes
overparameterization.  The Kashyap criterion is given by [Carrera, 1984]:

dk* = (m − n)s0
2 + ln Czz + m ⋅ ln(2π) + n ⋅ ln m

2π( ) + ln J
T
Czz

−1
J (2.8.6.6)

with dk * proportional to the negative logarithm of the posterior probability that model k  is
correct, given the available data [Kashyap, 1982].

All criteria discussed in this section are based on a linearity and normality assumption.  If
this assumption is violated, the criteria should be applied with care.  As a safeguard against
misinterpretation, it is suggested to consider a model superior to its competitors only if that
model realizes significantly lower values for most or all criteria.
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2 . 8 . 7 Uncertainty propagation analysis

Model predictions are inherently uncertain and may significantly deviate from the true
system behavior.  There are many reasons for the inconsistency between model predictions
and the actual or observed behavior.  The main sources for modeling errors include:

Inconsistencies and Errors in the Conceptual Model:  As repeatedly mentioned in the
previous sections, the conceptual model is by far the most important element in numerical
modeling.  Considerable effort should be spent on carefully developing the conceptual model
because errors in the model structure are difficult to identify and to correct, and they usually
have the greatest impact on the model predictions.

Uncertainty in the Input Parameters:  Another source of prediction errors is insufficient
knowledge about the model parameters.  Errors or uncertainties in the input parameters lead
to errors or uncertainties in the model predictions.  The purpose of inverse modeling is to
estimate the best parameter set for a given model structure, and to reduce parameter uncer-
tainty.  There is a need to quantify the uncertainty in the model predictions as a result of
parameter uncertainty, which will be discussed in this section.

Discretization Errors:  The numerical solution of the governing equations has only finite
precision and may suffer from discretization errors such as numerical dispersion or oscilla-
tions.  While care must be taken when choosing the numerical scheme to solve a specific
problem, errors from the numerical implementation of the model are usually smaller than
those made by using wrong parameter values, which in turn are small compared with the
errors from using an inappropriate conceptual model.

When assessing modeling errors, one should consider the fact that modeling involves an
abstraction process, i.e., no exact solution is sought, but an approximation that is reasonable
and capable of reproducing the salient features of the system to be studied.

This section presents two methods to assess prediction uncertainties as a result of
parameter uncertainty:

• Linear uncertainty propagation analysis;
• Monte Carlo simulations.

Linear or First-Order-Second-Moment (FOSM) uncertainty propagation analysis quanti-
fies the uncertainty in model predictions by linearization.  As the name indicates, FOSM is
the analysis of the mean and covariance of a random function (the model prediction) based on
its first-order Taylor series expansion.  The covariance of the input parameters is translated
into the covariance of the system response.  This presumes that the mean and covariance are
sufficient to characterize the distribution of the dependent variables, i.e., the model results are
assumed to be normally or log-normally distributed.  This assumption is valid whenever
parameter uncertainties are sufficiently small, or when the model is linear and the distribution
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of the input parameters is normal.  The validity of the normality and linearity assumption
must be tested before applying FOSM.

We first develop expressions for the mean and covariance matrix of the model prediction.
Let p̂ be the vector of length n  holding the best-estimate values of the input parameters that
are considered uncertain.  The uncertainty is described by the covariance matrix Cpp .
Furthermore, z  is a vector of length m  containing the simulation results at certain points in
space and time.  These model predictions are a nonlinear function of the parameter vector p.
Finally, let J  be the m × n Jacobian matrix holding sensitivity coefficients Jij = ∂zi(p̂) ∂pj .
The model prediction z(p) can be approximated using first-order Taylor series expansion
about p̂ as follows:

z(p) =
1

z(p̂) + J(p − p̂) (2.8.7.1)
The mean is given by:

E[z(p)] =
1

E[z(p̂)] + E[J(p − p̂)]

=
1

E[z(p̂)]

z(p̂)
123 + E[J] ⋅ E[(p − p̂)]

0
1 24 34

E[z(p)] =
1

z(p̂) (2.8.7.2)

The first-order approximation of the expected values of the dependent variables is the vector
of the model prediction obtained using the mean parameters.  The mean parameters are
approximated by the estimates p̂.

The covariance matrix of the simulated system response is derived using the following
definition, with ẑ = z(p̂):

Cov[z(p)] =
1

E[{z − ẑ}{z − ẑ}
T

] (2.8.7.3)

Cov[z(p)] =
1

E[{ z(p)

z(p̂) + J(p − p̂)
{ − E[z(p)]

z(p̂)
123}⋅{ z(p)

z(p̂) + J(p − p̂)
{ − E[z(p)]

z(p̂)
123}

T
]

=
1

E[{J(p − p̂)}{J(p − p̂)}
T

]

=
1

J{E[{p − p̂}{p − p̂}
T

]

Cov(p̂)
1 2444 3444 J

T

Cov[z(p)] =
1

JCppJ
T ≡ Cẑẑ (2.8.7.4)



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 7 6 THEORY

Equation (2.8.7.4) was also used in Section 2.8.5.  Here, it describes the prediction uncer-
tainty for any set of uncertain input parameters, whereas in Section 2.8.5 it was used to eval-
uate the uncertainty of the calculated system response during an inversion, as a result of the
uncertainty of the best-estimate parameter set.

Linear uncertainty analysis has the following advantages and disadvantages:

Advantages:

• The uncertainties in the model predictions can be described in a compact way by means of
the covariance matrix Cẑẑ , i.e., results are easy to understand and convenient to report;

• Correlations among the parameters are taken into account;

• The output covariance matrix Cẑẑ  contains correlations among model predictions;

• FOSM is computationally inexpensive, requiring n + 1 forward simulations.

Disadvantages:

• The uncertainty in the input parameters are expected to be accurately described by a
covariance matrix Cpp ;

• If parameters are highly uncertain, the linearity assumption may be violated;

• FOSM assigns probabilities to physically unreasonable system responses, i.e., FOSM
should not be used to analyze extreme events in the tail of the distribution.

An alternative to FOSM uncertainty propagation analysis is to perform Monte Carlo simu-
lations.  Monte Carlo (MC) requires repetitive solution of the simulation model, with the
parameters randomly sampled from their suspected probability distributions.  The output
from MC runs is then used to analyze the statistical properties of the resulting distribution,
which represents the uncertainty of the model predictions.  The procedure is summarized in
Table 2.8.7.1.

Table 2.8.7.1.  Monte Carlo Simulations

 Step 1: Define probability distribution for all uncertain input parameters.

 Step 2: Randomly sample parameter values from the defined distributions.

 Step 3: Combine sampled parameter values randomly to obtain a parameter vector.

 Step 4: Run simulation and store the results.

 Step 5: Repeat Steps (2) through (4) nMC  times.

 Step 6: Perform statistical analyses (histogram, moments) of ensemble of model output.
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To consider correlations among the parameters, the random combination of parameter values
in Step 3 must be modified such the covariance function is correctly repoduced (see, for
example, Kitterød and Gottschalk [1997]).

How many Monte Carlo runs should be performed?  The number of Monte Carlo simulations
nMC  can be considered sufficient if:

(1) The selected probability density function of the input parameters is reasonably well
approximated by the histogram of the randomly generated parameter values.

(2) The histogram of the model predictions allows for a statistical analysis.  That means
that a sufficient number of realizations (simulation results) should fall within each inter-
val used to calculate probabilities.  For example: The probability that the model predic-
tion zi  falls within the interval [a,b] is approximated by:

Γ[a,b] = Pr(a ≤ zi ≤ b) ≈ number of realizations in interval [a,b]
total number of Monte Carlo simulations =

n[a,b]
nMC

Therefore, the minimum number of Monte Carlo simulations, nMC,min , should be large
enough so that Γ[a,b] remains constant, i.e., independent of nMC .  This condition is
fulfilled for relatively small values of nMC  in the case of intervals around the mean,
where n[a,b] is usually large due to the high probability density.  However, if one is
interested in the tail of the distribution, then the number of Monte Carlo simulations
required is much higher.

(3) The minimum number of Monte Carlo simulations must be increased if the number of
uncertain parameter increases because more parameter combinations are possible.

(4) From experience, the number of Monte Carlo simulations can be as low as 50 and as
high as 2000 or greater.

Uncertainty propagation analysis by means of Monte Carlo simulations has the following
advantages and disadvantages:

Advantages:

• Any distribution (uniform, normal, log-normal, exponential, any arbitrary histogram) can
be chosen to describe parameter uncertainty;

• No assumption is made about the distributional form of the model output, i.e., a full
distribution of the predictions is obtained; Monte Carlo is termed a full distribution
analysis;

• Nonlinearities are inherently taken into account;

• Results from Monte Carlo simulations are always in the physically feasible range.
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Disadvantages:

• Results from Monte Carlo simulations are difficult to report because they usually don’t
follow a normal distribution;

• Since the combination of parameter values in Step 3 (see Table 2.8.7.1) is random, no
correlations between parameters are included;

• Monte Carlo simulations are computationally expensive.

EXAMPLE

A short example illustrates the differences between the linear FOSM uncertainty propaga-
tion analysis and Monte Carlo simulations.  As indicated above, for small standard deviations
of the input parameters, and for model output that can be well approximated by a linear func-
tion of the parameters within the range of the error band, FOSM is a fast method to calculate
a measure of prediction uncertainty that is easy to report.  If the model is highly nonlinear,
and the uncertainties of the input parameters are large, Monte Carlo simulations have to be
performed to examine many parameter combinations according to their probabilities.  Monte
Carlo simulations provide the full distribution of the model output at the selected points in
space and time.  The Monte Carlo method is very flexible in handling non-Gaussian distribu-
tions of both input parameters and output variables, but it is computationally expensive and
the results are difficult to report.

Both approaches are compared using a synthetic laboratory experiment consisting of three
parts: (1) injection of water into a partially saturated sand column under constant pressure for
300 seconds; (2) injection of gas for 150 seconds, followed by (3) a 150-second shut-in
recovery period.  The experiment is described in Finsterle [1999c; Problem 1].

The standard deviations of three uncorrelated input parameters—the logarithm of the
absolute permeability, porosity, and the initial gas saturation in the soil column—are assumed
to be 0.1, 0.05, and 0.05, respectively.  As a result of parameter uncertainty, the prediction
of the pressure at the center of the column will also be uncertain.

The results from both the FOSM and Monte Carlo uncertainty analyses are visualized in
Figure 2.8.7.1.  While the linear FOSM analysis gives a reasonable estimate of prediction
uncertainty for most parts of the experiment, the Monte Carlo simulations reveal an asymme-
try of the output distribution in the period where nonlinear effects prevail.  Note that FOSM
analysis assigns a certain probability to pressure responses that are below 1 bar, which is
physically not possible in this experiment.  The Monte Carlo simulations naturally stay away
from this lower bound.  The highest pressures were achieved with a parameter combination
of low permeability, high porosity, and low initial gas saturation.
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Figure 2.8.7.1.  Comparison between FOSM and Monte Carlo uncertainty propagation
analyses.

RELATED iTOUGH2 COMMANDS

Linear error propagation analysis is invoked by command >>> FOSM, where the
standard deviations of the input parameters are provided either through the appropriate
fourth-level commands in block > PARAMETER, or—if correlations among the parameters
are to be specified—as a full covariance/correlation matrix (see keyword MATRIX).  The
Jacobian matrix can be calculated using either >>> FORWARD or >>> CENTERED finite
differences.

Monte Carlo simulations are invoked using command >>> MONTE CARLO and its
keywords.  By default, the input parameters are sampled from a normal distribution in the
range indicated by command >>> RANGE, with the initial parameter guess as the mean, and
with the standard deviation provided through the appropriate fourth-level commands in block
> PARAMETER.  Adding command >>>> LOGARITHM makes iTOUGH2 sample from a
log-normal distribution, and command >>>> UNIFORM chooses a uniform distribution for
the corresponding input parameter.  The total number of Monte Carlo simulations, nMC , is
given through command >>> SIMULATIONS.  A special plot file is created for convenient
plotting of Monte Carlo runs; the corresponding file name contains the label “_mc”.
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3 . iTOUGH2 OUTPUT

3 . 1 Introduction

The inverse modeling capabilities outlined in Section 2, which include sensitivity analy-
sis, parameter estimation, and uncertainty propagation analysis, are implemented into
iTOUGH2.  iTOUGH2 requires the user to supply a standard TOUGH2 input file, which
describes the forward problem, and an iTOUGH2 input file, which identifies the parameters
to be estimated, the observations against which to calibrate the model, as well as various
program options.  The report “iTOUGH2 Command Reference” [Finsterle, 1999b] as well as
the web site http://www-esd.lbl.gov/iTOUGH2 contain descriptions of all
iTOUGH2 commands.  Full iTOUGH2 applications are discussed in Finsterle [1999c].

An iTOUGH2 run produces a standard TOUGH2 output file and a number of iTOUGH2
output files.  In this section, the main iTOUGH2 output file is described, mainly by making
reference to equations discussed in Section 2.  The contents of an iTOUGH2 output file
change depending on the selected options.  The one shown in this section is a typical output
file produced by running an inversion for parameter estimation.  The related inverse problem
is described in Finsterle [1999c; Problem 3].  Line numbers have been added to the output
file to facilitate easy referencing in the text.  While an iTOUGH2 output file should be viewed
and printed with a width of 132 columns, it was reformatted here to fit the width of the page.
Omissions are indicated with “(...)”.  Information not to be found in the output file but
added for clarification (e.g., column numbers, comments) is printed in italics.  Also note that
the contents of an iTOUGH2 output file are frequently modified as the code is improved.

3 . 2 Header

Figure 3.2.1 shows the iTOUGH2 header information.  It identifies the version of the
code with version number, date, and computer architecture for which the program was
compiled  (Line 11).  Line 15 indicates the time when the run was started, followed by the
iTOUGH2 and TOUGH2 input file names and the working directory.  The temporary direc-
tory is usually deleted at the end of a run, but may be saved using command option
-no_delete (see Section 6.2).  Note that additional input files may have been provided
(e.g., TOUGH2 input files MESH, INCON, and GENER, or iTOUGH2 data files).  The
names of these files must be provided on the Unix command line (see Section 6.2), which is
reproduced later in the output (see Figure 3.3.4, Line 136).  The number of the equation-of-
state (EOS) module is given along with a list of valid component and phase names.  These are
the names to be used in conjunction with commands and keywords COMPONENT and
PHASE, respectively.  Lines 27 and 31 indicate that portions of the iTOUGH2 input file were
commented out using “/*” and “*/”.  Line 29 indicates that Line 717 of the iTOUGH2 input
file was ignored because of a “#” sign in the first column.
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    1                @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
    2                @                                             @
    3                @   @  @@@@@   @@   @  @   @@@  @  @   @@@@   @
    4                @        @    @  @  @  @  @     @  @  @    @  @
    5                @   @    @    @  @  @  @  @ @@  @@@@     @@   @
    6                @   @    @    @  @  @  @  @  @  @  @    @@    @
    7                @   @    @     @@    @@    @@@  @  @  @@@@@@  @
    8                @                                             @
    9                @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
   10
   11        iTOUGH2 V4.0 (JANUARY 9, 1999) FOR SUN WORKSTATION, S. FINSTERLE
   12               COPYRIGHT 1999, REGENTS, UNIVERSITY OF CALIFORNIA
   13
   14 ================================================================================
   15                  >>>>>>>>>>>>> 3-Nov-98 10:54 <<<<<<<<<<<<<
   16 ================================================================================
   17 iTOUGH2 INPUT FILE            :  sam3p1i
   18 TOUGH2 INPUT FILE             :  sam3
   19 WORKING DIRECTORY             :  /m/presto/u/finster/itough2/samples/sample3
   20 TEMPORARY DIRECTORY           :  /m/presto/u/finster/it2_24135
   21 EQUATION OF STATE MODULE NO.  :  1 - Pure and traced water in liquid, (...)
   22 COMPONENTS                    :  WATER     TRACER    HEAT
   23 PHASES                        :  VAPOR     LIQUID
   24 TOUGH2 TITLE                  :  sam3: Five spot injection/production in (...)
   25 ================================================================================
   26
   27 --- Lines  700 to  703 skipped.
   28
   29 --- Line   717 ignored.
   30
   31 --- Lines  722 to  731 skipped.

Figure 3.2.1.  iTOUGH2 header information.

3 . 3 Printout of iTOUGH2 Input

This section of the output file reiterates the information specified in the iTOUGH2 input
file.  The output follows the main structure of the iTOUGH2 input file, with three sections
describing (1) the parameters to be estimated, (2) the observations used for calibration, and
(3) the program options.  In addition, some information is given regarding the computer
system used.

Figure 3.3.1 shows the list of parameters to be estimated.  The first column indicates the
order of the parameters as given in the iTOUGH2 input file.  The second column contains an
internal parameter identifier.  The annotation given in the third column is either specified by
the user (see command >>>> ANNOTATION) or internally generated.  The parameter type
is shown in the fourth column, followed by a flag indicating whether the parameter value, its
logarithm, or a multiplication factor is estimated.  Most parameters refer to a rock type.  If
more than one rock type is given, the material name is followed by a “+” sign and the number
of additional rock types specified.  The actual list of rock types is provided below (see Lines
55–60).  The prior parameter value is given in the seventh column.  A “@” sign indicates that
the initial guess is different from the prior information value.  The initial guess is not reiter-
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ated here, but can be seen later as the first parameter set starting minimization (see Figure
3.4.1, Line 160).  The eighth column contains the standard deviations that weigh prior
information, i.e., the square roots of the first n  diagonal elements of covariance matrix Czz ,
Equation (2.5.3.1).  In this example, prior information is not weighted.  Lower and upper
bounds are indicated in Columns 9 and 10.  The step size taken at each iteration during the
minimization process can be limited for each parameter individually (see Section 2.7.9).  No
such maximum step size is given for parameters No. 2 and 5.  This does not mean, however,
that their step sizes are not restricted by the global step-size criterion, Equation (2.7.9.1), if
such a criterion were specified.  Finally, certain parameters are further categorized by one or
more indices, as indicated in the last column.  For example, the parameter representing the
logarithm of the absolute permeability refers to one or multiple flow directions, indicated by
one or multiple numbers between 1 and 3 in Column 12.

   32
   33 =================================================================================
   34                                       INPUT
   35 =================================================================================
   36
   37
   38 PARAMETERS
   39 ==========
   40
      1  2     3              4        5    6        7     8      9       10      11 12
   41 ---------------------------------------------------------------------------------
   42 # ID ANNOTATION     PARAMETER   VLF ROCKS    PRIOR  SDEV L-BOUND U-BOUND M-STEP P
   43 ---------------------------------------------------------------------------------
   44 1  2 PERMEABILITY   ABS. PERM.   L  FRACT  -.130E+2  N/W -.18E+2 -.12E+2 .10E+1 3
   45 2  6 POROSITY FRACT POROSITY     V  FRACT   .500E+0@ N/W  .50E-1  .90E+0  UNLIM 1
   46 3 16 SPECIFIC HEAT  SPEC. HEAT   V  FRACT+1 .800E+3  N/W  .10E+3  .90E+4 .10E+3 1
   47 4 15 HEAT COND.     HEAT COND.   V  FRACT+1 .250E+1  N/W  .10E+1  .50E+1 .50E+0 1
   48 5  9 FRACT. SPACING MINC PAR.    V  -----   .200E+2  N/W  .10E+2  .50E+3  UNLIM 2
   49 6  7 RESERVOIR TEMP INIT. COND.  V  DEFAU   .250E+3  N/W  .20E+3  .40E+3 .40E+2 1
   50 ---------------------------------------------------------------------------------
   51 @ indicates that initial guess is different from prior information
   52 ---------------------------------------------------------------------------------
   53
   54
   55 ---------------------------------------------------------------------------------
   56  #  DEFINITION OF MULTIPLE MATERIALS/SOURCES
   57 ---------------------------------------------------------------------------------
   58  3  FRACT+1   =   FRACT + MATRX
   59  4  FRACT+1   =   FRACT + MATRX
   60 ---------------------------------------------------------------------------------
   61

Figure 3.3.1.  Parameters selected for estimation; N/W means taht prior information is not
weighted.

Figure 3.3.2 shows the output that provides information about the calibration points at
which the observed and calculated system response is compared.  First comes a list of
calibration times as specified in block >> TIMES.  These points are usually not identical
with the actual times at which data were collected; these are the times at which model output is
provided for comparison against measured or interpolated data.
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   62
   63 OBSERVATIONS
   64 ============
   65
   66 TIMES  [a]
   67 -----------
   68  0.1000000E+00  0.2000000E+00  0.3000000E+00  0.4000000E+00  0.5000000E+00
   69  0.6000000E+00  0.7000000E+00  0.8000000E+00  0.9000000E+00  0.1000000E+01
   70  0.1100000E+01  0.1200000E+01  0.1300000E+01  0.1400000E+01  0.1500000E+01
   71  0.1600000E+01  0.1700000E+01  0.1800000E+01  0.1900000E+01  0.2000000E+01
   72  0.2100000E+01  0.2200000E+01  0.2300000E+01  0.2400000E+01  0.2500000E+01
   73  0.2600000E+01  0.2700000E+01  0.2800000E+01  0.2900000E+01  0.3000000E+01
   74  0.3100000E+01  0.3200000E+01  0.3300000E+01  0.3400000E+01  0.3500000E+01
   75  0.3600000E+01  0.3700000E+01  0.3800000E+01  0.3900000E+01  0.4000000E+01
   76  0.4100000E+01  0.4200000E+01  0.4300000E+01  0.4400000E+01  0.4500000E+01
   77  0.4600000E+01  0.4700000E+01  0.4800000E+01  0.4900000E+01  0.5000000E+01
   78
   79   1       2       3         4       5      6      7    8      9        10    11
   80 ---------------------------------------------------------------------------------
   81 SET ANNOTATION  TYPE   ELEM/CONN   SDEV  MIN/MAX TIME LVMS DATAPOINTS FACTOR IOBS
   82 ---------------------------------------------------------------------------------
   83  1  P. INJECT.  PRES.  AA 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1
   84  2  P. PRODUCT. PRES.  KA 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1
   85  3  P. OBS. 1   PRES.  DB 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1
   86  4  P. OBS. 2   PRES.  GC 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1
   87  5  T. PRODUCT. TEMP.  KA 1      .50E+1 .10E+0 .60E+1  V   DATA: 60  .10E+1
   88  6  T. OBS. 1   TEMP.  DB 1      .50E+1 .10E+0 .60E+1  V   DATA: 60  .10E+1
   89  7  T. OBS. 2   TEMP.  GC 1      .50E+1 .10E+0 .60E+1  V   DATA: 60  .10E+1
   90  8  WATER PROD. Q-LIQ. JA 1 KA 1 .20E+0 .10E+0 .60E+1  V   DATA: 60 -.10E+1
   91  9  VAPOR PROD. Q-VAP. JA 1 KA 1 .10E-1 .10E+0 .60E+1  V   DATA: 60 -.10E+1
   92 ---------------------------------------------------------------------------------
   93
   94
   95 -------------------------------------------------
   96 Number of datasets                    :   9
   97 Number of calibration times           :  50
   98 Number of parameters                  :   6
   99 Number of parameters with prior info. :         0
  100 Number of PRESSURE                    :       200
  101 Number of FLOW RATE                   :       100
  102 Number of TEMPERATURE                 :       150
  103                                              ----
  104 Total number of observations          :       450
  105                                              ====
  106 Degree of freedom                     : 444
  107 -------------------------------------------------
  108

Figure 3.3.2.  Observations available for calibration.

Lines 83–91 list the data sets, with their user-specified annotations (Column 2), and their
data type.  The fourth column contains one or multiple gridblock names, identifying the
element or connection representing the location to which the data refer.  The standard devia-
tion shown in the fifth column is the square root of a constant variance that is assigned to all
diagonal elements of matrix Czz , referring to the corresponding data set.  Note that constant
measurement errors are specified using commands >>>> VARIANCE, >>>>
DEVIATION, >>>> WEIGHT and >>>> AUTO.  If a measurement error is specified as a
fraction of the observed value, this will also be indicated in Column 5.  Any diagonal element
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of Czz  can also be provided individually either through the data file (see command
>>>> COLUMNS) or using command >> COVARIANCE.  These latter two cases are,
however, not reflected in Column 5.  Columns 6 and 7 contain the minimum and maximum
time, respectively, at which data are available.  These time limits are given either by the data
themselves, or when a time window is specified.  They are affected by the time units speci-
fied for each data set, and by command >>>> SHIFT TIME.  Column 8 indicates whether
the calculated value itself or its logarithm will be used for comparison to the data (see
command >>>> LOGARITHM (o)).  Furthermore, if multiple elements or connections are
provided, either the sum (see command >>>> SUM) or the mean (see command
>>>> AVERAGE) of the variables calculated at these locations will be used for calibration.
Column 9 shows the data definition.  In most cases, the data are given as a time series, i.e., a
list of times versus observed values.  The number of data points read is indicated in
Column 9.  It is affected by command >>>> PICK.  Column 10 shows the factor specified
to convert the observed data to the standard units used in TOUGH2.  The last column is used
for further specification of an observation, identifying, for example, whether the observed
pressure refers to the gas or capillary pressure.

Lines 96–104 summarize the calibration points available.  The total number of data sets
given on Line 96 is usually identical with the number of points in space, i.e., each data set
provides a time series of observations at a certain location.  As mentioned above, the total
number of calibration times solely refers to the number of times specified in the iTOUGH2
input file, and may be different from the number of times at which data were collected.  The
total number of parameters is reported here since they may serve as additional data points
(prior information).  Because no standard deviations are provided for the parameters, they are
not included as prior information.  Here, the model will be calibrated simultaneously against
pressure, flow rate, and temperature measurements.  The 150 temperature measurements, for
example, consist of data at 3 locations, each calibrated at 50 points in time.  The degree of
freedom (Line 106) is the difference between the total number of observations and the
number of parameters to be estimated.

Figure 3.3.3 shows a summary of the computational parameters and the selected program
options.  Line 136 contains the arguments submitted to the Unix script file named on Line
135.  It would indicate all the additional file names provided for a specific run; no such files
were specified in this case.  The information about the computer system (see Figure 3.3.4)
varies depending on the system calls made from subroutines in file mdep$COMP.f, where
$COMP is the name of a computer platform.



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 8 5 OUTPUT

  109
  110 COMPUTATIONAL PARAMETERS
  111 ========================
  112
  113 Application                                     :      Levenberg-Marquardt
  114 Maximum number of iTOUGH2 iterations            :                       10
  115 Maximum number of TOUGH2 simulations            :                     9999
  116 Maximum number of uphill steps                  :                       10
  117 Maximum size of scaled parameter step           :              0.10000E+01
  118 Initial Levenberg parameter                     :              0.10000E-01
  119 Marquardt parameter                             :              0.10000E+02
  120 Finite difference quotient for Jacobian         :   6  forward -> centered
  121 Increment factor for computing derivatives      :              0.10000E-01
  122 Variance for error analysis                     :        Fisher Model Test
  123 Format of plotfile                              :                  Tecplot
  124 Objective Function                              :            Least-Squares
  125 Automatically select parameter if:
  126 - relative sensitivity is greater than          :                 -0.05000
  127 - independence measure is greater than          :                  0.00000
  128 Revisit selection criteria every  3 iterations
  129

Figure 3.3.3.  Summary of computational parameters and selected program options.

  130
  131 COMPUTER SYSTEM
  132 ===============
  133
  134 Machine type                                    : SUN Workstation
  135 UNIX script file name                           : /m/presto/u/finster/bin/itough2
  136 UNIX command line arguments                     : sam3p1i sam3 1
  137 Host name                                       : presto.lbl.gov
  138 User name                                       : not available
  139 Executable                                      : (...)/itough2/itough2_1.(...)
  140 Computer is as fast as a SUN ULTRA 1
  141
  142
  143 --- End of iTOUGH2 input job:  736 lines read,    0.66 CPU-seconds used
  144

Figure 3.3.4.  Information about the computer system used.
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3 . 4 Printout From Minimization Algorithm

The next section of the output file contains printout from the minimization algorithm.  The
messages depend on the minimization method chosen, the solution path taken, and the
constraints imposed.  Figure 3.4.1 shows an example from the Levenberg-Marquardt mini-
mization algorithm, with the parameters automatically being chosen using the sensitivity
criterion (see Equations (2.7.9.2) through (2.7.9.4), and Figure 3.3.3, Lines 125–128).

The value of the objective function obtained with the initial parameter set is shown on
Lines 160–161.  The  394th element of the residual vector yielded the maximum squared
weighted residual.  This element is related to the injection pressure after 4.4 years, as can be
seen from the list of residuals discussed below (see Figure 3.7.1).  The parameters shown on
Lines 160–161 are identical to the prior information values previously reported (see Figure
3.3.1, Lines 44–49).  An exception is the second parameter, porosity, which was marked on
Line 45 (see Figure 3.3.1) as a parameter with an initial guess different from its prior infor-
mation value.

Next, the gradient of the objective function, Equation (2.7.2.3), is calculated using
forward finite differences, Equation (2.7.2.10a).  Automatic parameter selection was invoked
(Lines 164–174).  According to the sensitivity criterion (2.7.9.3), the initial reservoir
temperature is the only sensitive parameter worth updating; all the other parameters are
temporarily deactivated.  The Levenberg-Marquardt algorithm proposes to increase the initial
reservoir temperature by 62 ˚C.  However, the user has limited the step to a maximum of
40 ˚C, as previously noted (see Figure 3.3.1, Line 49).  As a consequence of automatic
parameter selection and step size limitation, only the sixth element of the parameter vector is
updated by 40, as indicated on Line 179.  The new parameter set (Lines 180–181) leads to a
rather significant reduction of the objective function from the initial value shown on Line 160
to the value given on Line 180.  This concludes the first iteration.  Similar output is generated
for each additional iteration (not shown).

Lines 256–273 show a sequence of unsuccessful attempts to reduce the objective
function.  After each unsuccessful step, the Levenberg parameter is increased by a factor of
10, which is the Marquardt parameter given on Line 119 of Figure 3.3.3.  Increasing the
Levenberg parameter effectively reduces the length of the step and changes its orientation (see
Table 2.7.4.1).  After four unsuccessful steps, the objective function was finally reduced,
completing the fifth iteration.

Since the parameter selection criterion is relaxed with each iteration according to Equation
(2.7.9.4), all parameters are updated for the last iteration as shown on Lines 370–380.
Centered finite differences (Line 368) were used to more accurately calculate the Jacobian
matrix for the last few iterations and to provide a better basis for the subsequent error analysis
(see also Figure 3.3.3, Line 120).  A final step in the parameter space is performed, leading
to the best-estimate parameter set.  This inversion was terminated by reaching the maximum
number of iterations (Line 388), as specified by the user (see Figure 3.3.3, Line 114).
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  145
  146 =================================================================================
  147                                      OUTPUT
  148 =================================================================================
  149
  150
  151 LEVENBERG-MARQUARDT ALGORITHM
  152
  153 I  = NEW ITERATION        J  = JACOBIAN           S  = STEP    U  = UNSUCC. STEP
  154 PS = PARAMETER SELECTION  PU = PARAMETER UPDATE   B  = BOUNDS  M  = MESSAGE
  155
  156 ---------------------------------------------------------------------------------
  157 ITER TOUGH2 OBJ FUNC. MAX. RES. EQU. PERMEABILITY  POROSITY FRACT   SPECIFIC HEAT
  158                                        HEAT COND.  FRACT. SPACING RESERVOIR TEMP.
  159 ---------------------------------------------------------------------------------
  160>I  0    1 0.14300E+06 0.104E+4  394 -0.130000E+02    0.250000E+00    0.800000E+03
  161                                      0.250000E+01    0.200000E+02    0.250000E+03
  162 J  1 Gradient     =   0.92100E+04 (forward)
  163 --------------------------------------------------------------------
  164                   Automatic Parameter Selection
  165 --------------------------------------------------------------------
  166     Parameter       Rel. Sensitivity     Independence         Status
  167     Critical Value          0.0500           0.0000
  168 --------------------------------------------------------------------
  169   1 PERMEABILITY            0.0212 -         0.7439      deactivated
  170   2 POROSITY FRACT          0.0000 -         0.9340      deactivated
  171   3 SPECIFIC HEAT           0.0048 -         0.4608      deactivated
  172   4 HEAT COND.              0.0001 -         0.0848      deactivated
  173   5 FRACT. SPACING          0.0002 -         0.0785      deactivated
  174   6 RESERVOIR TEMP.         1.0000 +         0.9653           active
  175 --------------------------------------------------------------------
  176 MS   Param. No. 6: RESER. TEMP. Step = 0.616E+2 exceeds max. step size = 0.400E+2
  177 S    Step size = 0.40E+2 Scaled step size = 0.16E+0 Levenberg parameter = 0.10E-1
  178 PU   Parameter update:               0.000000E+00    0.000000E+00    0.000000E+00
  179                                      0.000000E+00    0.000000E+00    0.400000E+02
  180>I  1    9 0.38033E+05 0.764E+3   15 -0.130000E+02    0.250000E+00    0.800000E+03
  181                                      0.250000E+01    0.200000E+02    0.290580E+03
  ... (...)
  256 MS   Param. No. 4: HEAT COND. Step = -0.119E+1 exceeds max. step size = -0.500E+0
  257 S    Step size = 0.64E+2 Scaled step size = 0.23E+0 Levenberg parameter = 0.10E-5
  258 U       1. unsuccessful step!              F(k+1)/F(k) =  0.101937E+01
  259 MS   Param. No. 4: HEAT COND. Step = -0.119E+1 exceeds max. step size = -0.500E+0
  260 S    Step size = 0.64E+2 Scaled step size = 0.23E+0 Levenberg parameter = 0.10E-4
  261 U       2. unsuccessful step!              F(k+1)/F(k) =  0.101923E+01
  262 MS   Param. No. 4: HEAT COND. Step = -0.118E+1 exceeds max. step size = -0.500E+0
  263 S    Step size = 0.63E+2 Scaled step size = 0.23E+0 Levenberg parameter = 0.10E-3
  264 U       3. unsuccessful step!              F(k+1)/F(k) =  0.101762E+01
  265 MS   Param. No. 4: HEAT COND. Step = -0.113E+1 exceeds max. step size = -0.500E+0
  266 S    Step size = 0.61E+2 Scaled step size = 0.23E+0 Levenberg parameter = 0.10E-2
  267 U       4. unsuccessful step!              F(k+1)/F(k) =  0.100364E+01
  268 MS   Param. No. 4: HEAT COND. Step = -0.784E+0 exceeds max. step size = -0.500E+0
  269 S    Step size = 0.50E+2 Scaled step size = 0.21E+0 Levenberg parameter = 0.10E-1
  270 PU   Parameter update:               0.804699E-02    0.133708E-01    0.503350E+02
  271                                     -0.500000E+00   -0.418822E-01   -0.347546E+00
  272>I  5   31 0.12689E+04 0.105E+3   60 -0.142207E+02    0.263371E+00    0.101722E+04
  273                                      0.240071E+01    0.396282E+02    0.299815E+03
  ... (...)

Figure 3.4.1.  Output from Levenberg-Marquardt minimization algorithm.
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  368 J 10 Gradient     =   0.33632E+03 (centered)
  369 --------------------------------------------------------------------
  370                   Automatic Parameter Selection
  371 --------------------------------------------------------------------
  372     Parameter       Rel. Sensitivity     Independence         Status
  373     Critical Value          0.0000           0.0000
  374 --------------------------------------------------------------------
  375   1 PERMEABILITY            0.1437 +         0.9189           active
  376   2 POROSITY FRACT          0.0067 +         0.6146        activated
  377   3 SPECIFIC HEAT           0.2968 +         0.1120           active
  378   4 HEAT COND.              0.1393 +         0.0816           active
  379   5 FRACT. SPACING          0.2299 +         0.1406           active
  380   6 RESERVOIR TEMP.         1.0000 +         0.8275           active
  381 --------------------------------------------------------------------
  382 S    Step size = 0.88E+2 Scaled step size = 0.76E+0 Levenberg parameter = 0.10E-2
  383 PU   Parameter update:               0.345031E-03    0.183997E+00   -0.880571E+02
  384                                      0.968430E-01   -0.332190E+01    0.294084E-01
  385>I    Best fit parameter set:        -0.142203E+02    0.447367E+00    0.948594E+03
  386                                      0.280089E+01    0.547089E+02    0.300218E+03
  387
  388 C   Maximum number of iterations reached. MITER = 10  --> Terminate!
  389

Figure 3.4.1. (cont.)  Output from Levenberg-Marquardt minimization algorithm.

3 . 5 Printout From Sensitivity Analysis

The next section of the output file contains the scaled sensitivity matrix and the aggregate
sensitivity measures discussed in Section 2.8.2.  Figure 3.5.1 shows an excerpt from the
scaled sensitivity matrix, with elements given by Equation (2.8.2.1).  Each column refers to a
parameter, and each row represents an observation, with prior information occupying the first
n  rows.  Since prior information is not weighted, the corresponding sensitivity coefficients
are zero.  The elements of the Jacobian matrix (Equation 2.7.2.4) are obtained by multiplying
the scaled sensitivity coefficient with the standard deviation of the corresponding observation
(see Figure 3.3.2, Lines 83–91, Column 5), and by dividing it by the expected parameter
variation (see Figure 3.5.3, Column 3).  Alternatively, command >>> SENSITIVITY can
be used to print the unscaled sensitivity matrix.  The last column in Figure 3.5.1 contains the
sum of the absolute values of the scaled sensitivity coefficients over all columns of a row,
i.e., it is the aggregate sensitivity measure ai  (Equation 2.8.2.2), indicating the potential
contribution of each calibration point to the inverse problem.



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 8 9 OUTPUT

  390
  391 Sensitivity Analysis
  392 --------------------
  393
  394 Element Sij of the scaled sensitivity matrix is the partial derivative of the
      calculated system response zi with respect to parameter pj,
  395 scaled by inverses of the respective standard deviations:
  396
  397       dz  * sigma(p )
  398         i          j
  399 S   = ---------------
  400  ij   dp  * sigma(z )
  401         j          i
  402
  403
  404     obervation     time              1             2    3 - 6             7
  405                           PERMEABILITY      POROSITY    (...)          Total
  406   1 PERMEABILITY           0.00000E+00   0.00000E+00    (...)    0.00000E+00
  407   2 POROSITY FRACT         0.00000E+00   0.00000E+00    (...)    0.00000E+00
  408   3 SPECIFIC HEAT          0.00000E+00   0.00000E+00    (...)    0.00000E+00
  409   4 HEAT COND.             0.00000E+00   0.00000E+00    (...)    0.00000E+00
  410   5 FRACT. SPACING         0.00000E+00   0.00000E+00    (...)    0.00000E+00
  411   6 RESERVOIR TEMP.        0.00000E+00   0.00000E+00    (...)    0.00000E+00
  412   7 P. INJECT       0.1   -0.86315E+01  -0.71697E-01    (...)    0.14688E+02
  413   8 P. INJECT       0.2   -0.88301E+01  -0.50854E-01    (...)    0.14818E+02
  414   9 P. INJECT       0.3   -0.89879E+01  -0.39032E-01    (...)    0.14870E+02
  415  10 P. INJECT       0.4   -0.88552E+01  -0.26367E-01    (...)    0.14947E+02
  416  11 P. INJECT       0.5   -0.89262E+01  -0.29528E-01    (...)    0.15129E+02
  417  12 P. INJECT       0.6   -0.90259E+01  -0.28070E-01    (...)    0.15303E+02
  418  13 P. INJECT       0.7   -0.91199E+01  -0.25602E-01    (...)    0.15401E+02
  419  14 P. INJECT       0.8   -0.91994E+01  -0.24324E-01    (...)    0.15478E+02
  420  15 P. INJECT       0.9   -0.92716E+01  -0.23412E-01    (...)    0.15548E+02
 (...)
  462  57 P. PRODUC       0.1    0.20721E+02  -0.10753E+00    (...)    0.26841E+02
  463  58 P. PRODUC       0.2    0.20751E+02  -0.52436E-02    (...)    0.26758E+02
  464  59 P. PRODUC       0.3    0.21173E+02   0.22315E-01    (...)    0.27240E+02
  465  60 P. PRODUC       0.4    0.26601E+02   0.20814E-01    (...)    0.38486E+02
  466  61 P. PRODUC       0.5    0.21822E+02  -0.28815E+00    (...)    0.34494E+02
  467  62 P. PRODUC       0.6    0.18871E+02   0.24173E-01    (...)    0.25370E+02
  468  63 P. PRODUC       0.7    0.19345E+02   0.11348E-01    (...)    0.25633E+02
  469  64 P. PRODUC       0.8    0.19473E+02  -0.21395E-02    (...)    0.25777E+02
  470  65 P. PRODUC       0.9    0.19510E+02  -0.51889E-02    (...)    0.25834E+02
 (...)
  851 446 VAPOR PRO       4.0    0.22503E+02   0.47209E-01    (...)    0.27378E+02
  852 447 VAPOR PRO       4.1    0.22478E+02   0.50432E-01    (...)    0.27728E+02
  853 448 VAPOR PRO       4.2    0.22430E+02   0.55152E-01    (...)    0.28109E+02
  854 449 VAPOR PRO       4.3    0.22372E+02   0.60786E-01    (...)    0.28517E+02
  855 450 VAPOR PRO       4.4    0.22313E+02   0.66910E-01    (...)    0.28949E+02
  856 451 VAPOR PRO       4.5    0.22258E+02   0.73230E-01    (...)    0.29405E+02
  857 452 VAPOR PRO       4.6    0.22210E+02   0.79779E-01    (...)    0.29884E+02
  858 453 VAPOR PRO       4.7    0.22171E+02   0.86491E-01    (...)    0.30385E+02
  859 454 VAPOR PRO       4.8    0.22143E+02   0.93112E-01    (...)    0.30908E+02
  860 455 VAPOR PRO       4.9    0.22127E+02   0.99762E-01    (...)    0.31451E+02
  861 456 VAPOR PRO       5.0    0.22124E+02   0.10646E+00    (...)    0.27346E+02
  862

Figure 3.5.1.  Scaled sensitivity matrix.
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 1321
 1322 Contributions of data to sets parameter sensitivity
 1323 ---------------------------------------------------
 1324
 1325                             1           2           3           4           5
 1326                    P. INJECT.  P. PRODUC.   P. OBS. 1   P. OBS. 2  T. PRODUC.
 1327 1 PERMEABILITY     0.48563E+3  0.11085E+4  0.12314E+3  0.54652E+2  0.50155E+3
 1328 2 POROSITY FRACT   0.94417E+0  0.17972E+1  0.66888E+0  0.50871E+0  0.81130E+0
 1329 3 SPECIFIC HEAT    0.96928E+0  0.98518E+1  0.70927E+0  0.69971E+0  0.45125E+1
 1330 4 HEAT COND.       0.54330E+0  0.83641E+1  0.52197E+0  0.51636E+0  0.38202E+1
 1331 5 FRACT. SPACING   0.32530E+1  0.41695E+2  0.28610E+1  0.28355E+1  0.19021E+2
 1332 6 RESERVOIR TEMP.  0.29654E+3  0.30371E+3  0.29800E+3  0.29815E+3  0.13708E+3
 1333
 1334                             6           7           8           9
 1335                     T. OBS. 1   T. OBS. 2  WATER PROD  VAPOR PROD
 1336 1 PERMEABILITY     0.69771E-1  0.22367E-1  0.60649E+2  0.12120E+4
 1337 2 POROSITY FRACT   0.22391E+0  0.18904E-1  0.35593E+0  0.82275E+1
 1338 3 SPECIFIC HEAT    0.13286E+1  0.12533E-2  0.16705E+1  0.33329E+2
 1339 4 HEAT COND.       0.10026E+1  0.11835E-2  0.15066E+1  0.30073E+2
 1340 5 FRACT. SPACING   0.50529E+1  0.64648E-2  0.75294E+1  0.14998E+3
 1341 6 RESERVOIR TEMP   0.98569E+2  0.99992E+2  0.14440E+2  0.28651E+3
 1342
 1343 Sum of Sensitivity Coefficients
 1344 -------------------------------
 1345       1                   2              3              4              5
 1346 -----------------------------------------------------------------------------
 1347 PARAMETER/OBSERVATION     TOTAL       VARIATION   SENS. OUTPUT  SENS. OBJ. F.
 1348 -----------------------------------------------------------------------------
 1349 PERMEABILITY   :    0.70926E+04     0.50000E+00    0.35463E+04    0.40542E+01
 1350 POROSITY FRACT :    0.67783E+02     0.20000E+00    0.13557E+02    0.18943E+00
 1351 SPECIFIC HEAT  :    0.10614E+01     0.50000E+02    0.53072E+02    0.83725E+01
 1352 HEAT COND.     :    0.23175E+03     0.20000E+00    0.46350E+02    0.39291E+01
 1353 FRACT. SPACING :    0.23224E+02     0.10000E+02    0.23224E+03    0.64866E+01
 1354 RESERVOIR TEMP.:    0.18330E+03     0.10000E+02    0.18330E+04    0.28209E+02
 1355 -----------------------------------------------------------------------------
 1356 P. INJECTION   :                                   0.78790E+03
 1357 P. PRODUCTION  :                                   0.14740E+04
 1358 P. OBS. 1      :                                   0.42591E+03
 1359 P. OBS. 2      :                                   0.35737E+03
 1360 T. PRODUCTION  :                                   0.66680E+03
 1361 T. OBS. 1      :                                   0.10625E+03
 1362 T. OBS. 2      :                                   0.10004E+03
 1363 WATER PROD.    :                                   0.86152E+02
 1364 VAPOR PROD.    :                                   0.17201E+04
 1365 -----------------------------------------------------------------------------
 1366

Figure 3.5.2.  Summary of contributions of data sets to parameter sensitivity.

Figure 3.5.2 contains the table that summarizes the relative contribution of each data set to
each of the parameters, given by Equation (2.8.2.3).  For example, vapor flow rates and
pressures measured at the production well contain the most information for the determination
of absolute permeability, whereas temperature measurements in the two remote observation
wells do not make a contribution to the estimation of this specific parameter.

The second table in Figure 3.5.2 contains the remaining aggregate sensitivity measures.
The overall parameter sensitivity dj , Equation (2.8.2.5), is given in Column 4, Lines 1349–
1354.  It is the product of the sum of the absolute sensitivity coefficients scaled by the
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measurement errors (Column 2) and the expected parameter variation σpj
, which is repro-

duced in Column 3.  The  expected parameter variation σpj
 is specified either using

command >>>> DEVIATION (p), which also weighs prior information, or command
>>>> VARIATION.  If neither of these commands is given, the value given in Column 3 is
set to 10% of the initial parameter guess.  Note that the only purpose of command
>>>> VARIATION is to provide σpj

 for the scaling of the sensitivity matrix (Figure
3.5.1), and its aggregate measures (Figure 3.5.2); σpj

 does not affect the outcome of the
inversion, unless it is also used to weigh prior information.  Column 5 shows the sensitivity
of the objective function with respect to each parameter, as given by Equation (2.8.2.6).  The
lower part of Figure 3.5.2., Lines 1356–1364, lists measure ck , Equation (2.8.2.4).  It is the
overall sensitivity of each data set.  It shows, for example, that the vapor flow data are crucial
for the solution of the inverse problem, whereas the amount of water produced doesn’t seem
to be sufficiently sensitive to the parameters of interest.  If this sensitivity analysis were
performed for test design, one could also conclude that the accuracy of the water production
measurements would have to be improved by an order of magnitude to be able to make a
significant contribution to the inverse problem at hand.

If fewer than 6 parameters are estimated, the information shown in Figure 3.5.2 is
directly appended to the output of the scaled sensitivity matrix in the format schematically
shown in Figure 2.8.2.1b.
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3 . 6 Printout From Error Analysis

This section of the iTOUGH2 output deals with the covariance matrix of the estimated
parameter set discussed in Section 2.8.4.  Depending on the outcome of the Fisher Model
Test (see Table 2.8.3.1) or the user’s choice, the inverse of the curvature matrix is multiplied
with either the a  priori  error variance σ0

2 = 1 or the a posteriori error variance s0
2, Equation

(2.8.3.1).  The factor used for the subsequent error analysis is first reported (see Figure
3.6.1, Line 1372).  Lines 1377–1383 constitute the covariance matrix Cpp , Equation
(2.8.4.2).  The diagonal elements are the variances σp

2 ; the covariances are reproduced as the
lower triangular matrix, whereas the upper triangular matrix shows the corresponding corre-
lation coefficients, Equation (2.8.4.3).  These correlation coefficients contain contributions
from indirect dependencies, which are difficult to interpret physically.  The matrix of direct
correlations, revealing the dependence of pairs of parameters, is shown below, Lines 1388–
1394.  The calculation of the matrix of direct correlations is described in Section 2.8.4.

 1367
 1368 ===========================================================================
 1369                                 ERROR ANALYSIS
 1370 ===========================================================================
 1371
 1372 Error analysis is based on >>> a posteriori <<< variance:  0.1009964E+01
 1373
 1374
 1375 Covariance(L+D)/Correlation(U) Matrix of Estimated Parameters
 1376 -------------------------------------------------------------
 1377                     PERM.  POROSITY SPEC HEAT HEAT COND   SPACING     TEMP.
 1378 PERMEABILITY     0.413E-5    -0.207     0.202    -0.272    -0.266    -0.175
 1379 POROSITY FRACT  -0.596E-4  0.200E-1    -0.362     0.576     0.657     0.221
 1380 SPECIFIC HEAT    0.201E-1 -0.251E+1  0.241E+4    -0.855    -0.275    -0.060
 1381 HEAT COND.      -0.177E-3  0.261E-1 -0.135E+2  0.103E+0     0.724     0.125
 1382 FRACT. SPACING  -0.989E-3  0.170E+0 -0.247E+2  0.426E+0  0.336E+1     0.087
 1383 RESERVOIR TEMP. -0.398E-4  0.350E-2 -0.328E+0  0.449E-2  0.179E-1  0.125E-1
 1384
 1385
 1386 Matrix of Direct Correlations
 1387 -----------------------------
 1388                     PERM.  POROSITY SPEC HEAT HEAT COND   SPACING     TEMP.
 1389 PERMEABILITY        1.000     0.133     0.240     0.225    -0.255    -0.245
 1390 POROSITY FRACT      0.133     1.000    -0.529    -0.507     0.598     0.418
 1391 SPECIFIC HEAT       0.240    -0.529     1.000    -0.993     0.974     0.508
 1392 HEAT COND.          0.225    -0.507    -0.993     1.000     0.982     0.508
 1393 FRACT. SPACING     -0.255     0.598     0.974     0.982     1.000    -0.515
 1394 RESERVOIR TEMP.    -0.245     0.418     0.508     0.508    -0.515     1.000
 1395

Figure 3.6.1.  Covariance matrix of estimated parameter set and direct correlation coeffi-
cients.
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Lines 1400–1405 of Figure 3.6.2 contain a list with the parameter estimates and their
a priori, conditional, and marginal standard deviations.  A value is given in Column 3 only if
prior information of a parameter is weighted using its a priori standard deviation.  The
conditional standard deviation indicates the estimation uncertainty assuming that all the other
parameters are perfectly known.  The marginal standard deviation given in Column 5 is the
square-root of the diagonal element of Cpp .  Column 6 holds Γ , the measure of overall pa-
rameter correlation given by Equation (2.8.4.4);  the higher its value, the more independent
the estimate.  The parameters in this table and the following correlation chart are sorted ac-
cording to this criterion.  In this example, permeability is the most independent parameter,
whereas heat conductivity is strongly correlated to all the other parameters.  Column 7 can be
interpreted as a measure of how much has been learned about a specific parameter by per-
forming the inversion.  Since no prior information was given, i.e., nothing was assumed to
be known about any of the parameters, Column 7 contains only ones in this example.  If the
uncertainty of a parameter after the inversion is only slightly lower than the a priori standard
deviation, the information gain would have been minimal, resulting in a value close to zero.

In the correlation chart, all parameters are connected to each other, where the vertical lines
linking two parameters indicate the correlation coefficient (Line 1411).  Since the parameters
are sorted according to their overall correlation Γ , the correlation chart displays a pyramid-
like structure, with long horizontal lines extending from the most strongly correlated parame-
ter at the bottom to shorter lines connecting the most independent parameter at the top.

 1396
 1397 Standard Deviations
 1398 -------------------
           1               2       3         4           5         6       7
 1399 PARAMETER         ESTIMATE PRIOR CONDITIONAL    MARGINAL     C/M   1-J/P
 1400 PERMEABILITY    -0.1422E+2  N/A    0.1867E-2   0.2032E-2   0.919   1.000
 1401 RESERVOIR TEMP.  0.3001E+3  N/A    0.9280E-1   0.1121E+0   0.827   1.000
 1402 POROSITY FRACT   0.2633E+0  N/A    0.8702E-1   0.1415E+0   0.615   1.000
 1403 FRACT. SPACING   0.5745E+2  N/A    0.2577E+0   0.1833E+1   0.141   1.000
 1404 SPECIFIC HEAT    0.1036E+4  N/A    0.5503E+1   0.4914E+2   0.112   1.000
 1405 HEAT COND.       0.2704E+1  N/A    0.2623E-1   0.3213E+0   0.082   1.000
 1406
 1407
 1408 Correlation Chart
 1409 -----------------
 1410
 1411  -0.8    -0.6    -0.4    -0.2     0.0         0.0     0.2     0.4     0.6     0.8
 1412    |-------|-------|-------|-------| PARAMETER |-------|-------|-------|-------|
 1413
 1414                          |--||-----|    PERM.   |------|
 1415                          |  ||                         |
 1416                          |  ||----||    TEMP.   |-|-|--||
 1417                          |  |     |               | |  ||
 1418                       |--|--|-----||  POROSITY  |-|-|--||-------------|--|
 1419                       |  |        |               | |  |              |  |
 1420                       |  |--------||  SPACING   |-|-|--|--------------|--|--|
 1421                       |  |        |                 |  |              |     |
 1422   |-------------------|--|--------||  SP. HEAT  |---|--|              |     |
 1423   |                      |                          |                 |     |
 1424   |----------------------|---------|  HEAT COND |---|-----------------|-----|
 1425

Figure 3.6.2.  Standard deviations and correlation chart.
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iTOUGH2 performs an eigenanalysis of the estimation covariance matrix.  A performance
index (Line 1429) of less than 1 indicates an accurate eigenanalysis.  The condition number
(Line 1430) is defined as the ratio of the largest and smallest eigenvalue.  It determines the
dominance of one eigenvalue over the others, also affecting the accuracy of the eigenanalysis.
A large scaled condition number (Line 1431), which is the condition number based on the
eigenvalues divided by the corresponding parameter estimates, indicates the presence of a
long valley in the objective function.  The eigenvalues given on Line 1439 represent the actual
lengths of the semiaxes of the hyper-ellipsoid.  We prefer to analyze the scaled eigenvalues
(Line 1447).  The parameter associated with the largest scaled eigenvalue is usually the most
uncertain, and—if also strongly correlated—responsible for poor identifiability of all
parameter combinations along the corresponding eigenvector, i.e., the respective column of
the modal matrix shown on Lines 1455–1460.  Note that the eigenvectors are normalized.

 1426
 1427 Eigenanalysis of Covariance Matrix
 1428 ----------------------------------
 1429 Performance index      :  0.29851783E-01
 1430 Condition number       :  0.69291990E+09
 1431 Scaled condition number:  0.69291990E+05
 1432
 1433
 1434 Eigenvalues
 1435 -----------
 1436
 1437                          1          2          3          4          5          6
 1438                      PERM.   POROSITY  SPEC HEAT  HEAT COND    SPACING      TEMP.
 1439   1 Eigenvalue:  0.3486E-5  0.9328E-2  0.2415E+4  0.6878E-3  0.3141E+1  0.1420E-1
 1440
 1441
 1442 Scaled Eigenvalues
 1443 ------------------
 1444
 1445                          1          2          3          4          5          6
 1446                      PERM.   POROSITY  SPEC HEAT  HEAT COND    SPACING      TEMP.
 1447   1 Eigenvalue:  0.1394E-4  0.2332E+0  0.9662E+0  0.1719E-1  0.3141E-1  0.1420E-3
 1448
 1449
 1450 Eigenvectors
 1451 ------------
 1452
 1453                           1          2          3          4          5          6
 1454                       PERM.   POROSITY  SPEC HEAT  HEAT COND    SPACING      TEMP.
 1455 1 PERMEABILITY    0.9998E+0  0.1608E-2  0.8340E-5  0.1700E-1 -0.2504E-3 -0.2003E-2
 1456 2 POROSITY FRACT -0.2874E-2  0.8071E+0 -0.1042E-2  0.1600E+0  0.4643E-1  0.5663E+0
 1457 3 SPECIFIC HEAT  -0.8171E-4 -0.5880E-3  0.9999E+0  0.4587E-2  0.1078E-1  0.4976E-3
 1458 4 HEAT COND.     -0.1611E-1 -0.2143E+0 -0.5591E-2  0.9719E+0  0.9213E-1  0.2316E-1
 1459 5 FRACT. SPACING  0.1856E-2 -0.1518E-1 -0.1027E-1 -0.9688E-1  0.9945E+0 -0.3253E-1
 1460 6 RESERVOIR TEMP  0.4937E-2 -0.5498E+0 -0.1359E-3 -0.1412E+0  0.4763E-2  0.8232E+0
 1461
 1462

Figure 3.6.3.  Eigenanalysis of estimation covariance matrix.
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3 . 7 Printout From Residual Analysis

The residual analysis has been discussed in Section 2.8.5.  We first describe the columns
of the main table shown in Figure 3.7.1.  The first column contains the index i ,  i = 1,K,m ,
frequently used to refer to a certain calibration point (see, for example, Figures 3.4.1 and
3.5.1 as well as specially requested output).  The first n  observations represent prior infor-
mation (Lines 1477–1482).  In this section of the iTOUGH2 output, the observations are
grouped by data set (i.e., not by time as in the actual residual vector), as can be seen in
Column 2, which labels the data set of the corresponding residual.

The calibration time in user-specified units (default: seconds) is shown in Column 3.
Columns 4 through 6 contain, respectively, the measured and calculated value and their
difference, the residual, Equation (2.4.1).  For the first n  rows, Column 4 holds the prior
information value, and Column 5 the best estimate.  Note that the measured value (Column 4)
may not be an actually recorded measurement, but a value interpolated between two data
points.  It may also be multiplied by the conversion factor shown in Figure 3.3.2,
Column 10.  The computed value (Column 5) is the result from the TOUGH2 simulator; a
shift and/or linear trend may have been applied if such parameters were estimated.

Column 7 holds the weight 1 / σz , i.e., the square-root of the reciprocal diagonal element
of matrix Czz .  For measurement errors that are constant for each data set, the value is the
reciprocal of the standard deviation given in Figure 3.3.2, Column 5.  Column 8 contains the
loss function ω  (see Table 2.6.5.1), i.e., the contribution of the calibration point to the final
objective function.  For least squares, this is the square of the weighted residual, r2 σz

2  .

The standard deviation reported in Column 9 is the uncertainty of the simulation result,
calculated using Equation (2.8.5.7).  It is also the uncertainty of the model prediction when
performing linear error propagation analysis (FOSM, see Section 2.8.7), i.e., the square-root
of the diagonal element of matrix Cẑẑ , Equation (2.8.7.4).  Column 10 holds the reliability
measure yi , Equation (2.8.5.9).  Local reliabilities less than 0.25 are marked with “*” (see,
for example, Line 1887).  Finally, the normalized residual, Equation (2.8.5.10), is given in
Column 11.  Normalized residuals that exceed the quantile of the normal distribution on the
chosen confidence level are marked with “*” (see, for example, Lines 1573 and 1887); they
should be checked as potential outliers.

The values in all columns (except time in Column 3) are given in standard TOUGH2
units.
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1463
1464 ==================================================================================
1465                                RESIDUAL ANALYSIS
1466 ==================================================================================
1467
1468 RESIDUAL : Measured - computed
1469 OMEGA    : Loss function (= squared weighted residual for least squares)
1470 STD. DEV.: A posteriori standard deviation of computed system response
1471 Yi       : Local reliability. Observations with Yi<0.25 are poorly controlled.
1472 Wi       : Normalized residual. If |Wi|>u(0.99) = 2.58 obs. is potential outlier.
1473
       1     2        3        4        5        6       7       8       9     10    11
1474 ----------------------------------------------------------------------------------
1475   # OBSERV.  TIME [a] MEASURED COMPUTED RESIDUAL  WEIGHT   OMEGA    SDEV  Yi    Wi
1476 ----------------------------------------------------------------------------------
1477   1 PERMEABILITY      -.130E+2 -.142E+2  .122E+1 .10E-49 .000E+0 .203E-2
1478   2 POROSITY FRACT     .500E+0  .263E+0  .236E+0 .10E-49 .000E+0 .141E+0
1479   3 SPECIFIC HEAT      .800E+3  .103E+4 -.236E+3 .10E-49 .000E+0 .491E+2
1480   4 HEAT COND.         .250E+1  .270E+1 -.204E+0 .10E-49 .000E+0 .321E+0
1481   5 FRACT. SPACING     .200E+2  .574E+2 -.374E+2 .10E-49 .000E+0 .183E+1
1482   6 RESERVOIR TEMP.    .250E+3  .300E+3 -.501E+2 .10E-49 .000E+0 .112E+0
1483   7 P. INJECT. .10E+0  .100E+8  .100E+8 -.769E+5 .500E-5 .147E+0 .165E+5 .99 -0.39
1484  16 P. INJECT. .20E+0  .102E+8  .101E+8  .127E+6 .500E-5 .407E+0 .157E+5 .99  0.64
1485  25 P. INJECT. .30E+0  .101E+8  .101E+8  .809E+4 .500E-5 .163E-2 .154E+5 .99  0.04
1486  34 P. INJECT. .40E+0  .100E+8  .101E+8 -.105E+6 .500E-5 .280E+0 .154E+5 .99 -0.53
1487  43 P. INJECT. .50E+0  .101E+8  .101E+8 -.483E+5 .500E-5 .585E-1 .155E+5 .99 -0.24
(...)
1533   8 P. PRODUC. .10E+0  .599E+7  .583E+7  .155E+6 .500E-5 .604E+0 .252E+5 .98  0.78
1534  17 P. PRODUC. .20E+0  .582E+7  .579E+7  .311E+5 .500E-5 .242E-1 .197E+5 .99  0.16
1535  26 P. PRODUC. .30E+0  .598E+7  .570E+7  .281E+6 .500E-5 .198E+1 .208E+5 .99  1.42
1536  35 P. PRODUC. .40E+0  .582E+7  .571E+7  .103E+6 .500E-5 .267E+0 .333E+5 .97  0.52
1537  44 P. PRODUC. .50E+0  .561E+7  .598E+7 -.369E+6 .500E-5 .341E+1 .432E+5 .95 -1.89
(...)
1573 368 P. PRODUC. .41E+1  .502E+7  .560E+7 -.579E+6 .500E-5 .840E+1 .226E+5 .99 -2.92*
(...)
1887  51 VAP. PROD. .50E+0 -.214E+0 -.189E+0 -.255E-1 .100E+3 .649E+1 .945E-2 .11*-7.53*
(...)
1928 420 VAP. PROD. .46E+1 -.210E+0 -.207E+0 -.264E-2 .100E+3 .701E-1 .134E-2 .98 -0.27
1929 429 VAP. PROD. .47E+1 -.200E+0 -.210E+0  .972E-2 .100E+3 .946E+0 .150E-2 .98  0.98
1930 438 VAP. PROD. .48E+1 -.223E+0 -.213E+0 -.102E-1 .100E+3 .105E+1 .170E-2 .97 -1.04
1931 447 VAP. PROD. .49E+1 -.215E+0 -.216E+0  .529E-3 .100E+3 .280E-2 .193E-2 .96  0.05
1932 456 VAP. PROD. .50E+1 -.224E+0 -.219E+0 -.483E-2 .100E+3 .233E+0 .217E-2 .95 -0.50
1933

Figure 3.7.1.  Residual analysis.

For each observation type, the residuals are visualized in a scatter plot of the residual
versus the calculated value.  In the example shown in Figure 3.7.2, pressure residuals are
depicted as digits, where the number refers to the number of the data set it belongs to (see
Figure 3.3.2, Column 2).  The residuals are expected to be randomly distributed around the
center line (Line 1649).  Unwanted trends in the residuals indicating a systematic error are
usually easy to detect.  Similar residual plots are generated for the temperature and flow rate
measurements (not shown).

Notice that the residual plot does not reflect the weight assigned to each data point.  Thus,
the residual plot may be misleading if the data sets or individual data points have been
assigned significantly different measurement errors.
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 1934
 1935 Residual Plots
 1936 --------------
 1937
 1938    RESIDUAL     -------------------------------------------------------------
 1939   0.504E+06     |                                        3                  |
 1940   0.452E+06     |                                                           |
 1941   0.400E+06     |                                    4    3                 |
 1942   0.349E+06     |    2                                                      |
 1943   0.297E+06     |  2                                     33                 |
 1944   0.246E+06     |    2                               44  33               1 |
 1945   0.194E+06     |   22  2                            444 3                 1|
 1946   0.142E+06     |  2222  2                             4 33                1|
 1947   0.909E+05     |   2222  2                           44   3            1 11|
 1948   0.393E+05     |  222 2  2                          444 3                11|
 1949  -0.123E+05     |-222-2- 2 - - - - -  - - - - - - - - 44-3-3- - - - - - - 11|
 1950  -0.639E+05     | 222  22                             44 33             11 1|
 1951  -0.115E+06     | 22 2                               444  3             11 1|
 1952  -0.167E+06     | 2    2 2                             4  3              111|
 1953  -0.219E+06     |                                     4  33               11|
 1954  -0.270E+06     | 2      22                           4  33                1|
 1955  -0.322E+06     |                                     44  3               1 |
 1956  -0.373E+06     |     2                              44   3                1|
 1957  -0.425E+06     |        2                                                1 |
 1958  -0.477E+06     | 2                                    4 3                  |
 1959  -0.528E+06     |                                     4  3                  |
 1960  -0.580E+06     |   2                                4                      |
 1961                 -------------------------------------------------------------
 1962                0.537E+07                                             0.104E+08
 1963                                            PRESSURE [Pa]
 (...)

Figure 3.7.2.  Scatter plot of residuals.

The residual analysis is summarized in a table reproduced in Figure 3.7.3.  The maximum
weighted residual (Lines 2026–2028, see also Figure 3.7.1, Line 1573) is the one with the
largest contribution to the objective function.  However, it may not be a potential outlier, i.e.,
its wi  value may be acceptably low as a result of high prediction uncertainty.  In this exam-
ple, the largest normalized residual (Lines 2030–2032) is associated with the vapor flow
measurement shown in Figure 3.7.1, Line 1887, which is also the only poorly controlled
measurement (Line 2029).  Line 2033 shows the probable size of the maximum error
(Equation 2.8.5.11) for residual No. 51.

A total of 10 iterations, i.e., minimization steps, were performed in this example (Line
2038), requiring 89 solutions of the forward problem (Line 2039).  The two measures
controlling numerical accuracy of the residual analysis, Equations (2.8.5.12) and (2.8.5.13),
are shown on Lines 2044 and 2045.

During the 10 iterations, the objective function was reduced from the value obtained with
the initial parameter set (Line 2050) to its final value shown on Line 2051; the relative contri-
bution of residuals from individual data sets and observation types (see Figure 3.7.4) is
reported as a percentage of the final objective function.
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 2023
 2024 Summary of Residual Analysis
 2025 ----------------------------
 2026 Max weighted residual at observation    :            368
 2027 Max weighted residual                   :    -0.2899E+01
 2028 Max residual                            :    -0.5798E+06
 2029 Number of poorly controlled observations:              1
 2030 Number of large normalized residuals    :              5
 2031 Max normalized residual at observation  :             51
 2032 Max normalized residual                 :           7.53
 2033 Probable size of maximum error          :     0.2221E+00
 2034
 2035
 2036 Iteration Statistics
 2037 --------------------
 2038 Number of iterations                    :             10
 2039 Number of TOUGH2 calls                  :             89
 2040
 2041
 2042 Control Measures
 2043 ----------------
 2044 Trace (P*QLL) : n   =   6               :     0.6000E+01
 2045 Sum   (Yi)    : m-n = 444               :     0.4440E+03
 2046
 2047
 2048 Objective Function                                                         C.O.F.
 2049 ------------------
 2050 Initial value of objective function     :     0.1430E+06                31888.6 %
 2051 Minimum value of objective function     :     0.4484E+03                  100.0 %
 2052

Figure 3.7.3.  Summary of residual analysis and iteration statistics.

Figure 3.7.4 shows the moment analysis of the residuals, Equations (2.8.5.1) through
(2.8.5.6).  The first block (Lines 2068–2077) presents the analyses for each data set, wheras
Line 2079 contains the moments of all weighted residuals.  The second block, Lines 2086–
2089 shows the same information for each observation type.  Of special interest is Column 9,
which shows the ratio of the bias—the mean of the residuals—and the standard deviation.  If
this ratio significantly deviates from zero, the corresponding data set or observation type is
systematically over- or underpredicted by the model, i.e., there is likely to be a systematic
error in either the data or the model.  Column 10 shows the contribution of the data set or
observation type to the final objective function.  Ideally, the contributions should reflect the
number of points (see Column 2) in the data set in proportion to the total number of calibra-
tion points, m .

Figure 3.7.5 shows the linear regression analysis of a scatter plot with the calculated
versus observed system response.  The intercept and slope are expected to be close to zero
and one, respectively.  For more details see the discussion in Finsterle [1999c; Problem 6].
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 2053
 2054 =======================================================================================
 2055
 2056 MEAN     : Mean of residuals = bias
 2057 MEDIAN   : Median of residuals
 2058 STD. DEV.: Root mean squared deviation of residuals from bias
 2059 AVE. DEV.: Mean absolute deviation of residuals from bias
 2060 SKEWNESS : Degree of asymmetry of residuals around bias
 2061 KURTOSIS : Relative peakedness of distribution
 2062 B/S      : Ratio of bias and standard deviation
 2063 C.O.F.   : Relative contribution to final objective function
 2064     1                  2       3       4         5        6      7      8     9    10
 2065 =======================================================================================
 2066 DATASET       DATAPOINTS     MEAN   MEDIAN     SDEV     ADEV   SKEW   KURT   B/S C.O.F.
 2067 ---------------------------------------------------------------------------------------
 2068 PRIOR INFORMATION      6                                                          0.0 %
 2069 P. INJECT.   [Pa]     50 -.651E+4  .904E+4  .149E+6  .120E+6  -.370  -.589  .044  6.0 %
 2070 P. PRODUCT.  [Pa]     50  .282E+5  .633E+5  .193E+6  .144E+6  -.908   .717  .146  1.3 %
 2071 P. OBS. 1    [Pa]     50 -.149E+5 -.268E+5  .217E+6  .175E+6   .320  -.516  .069 12.9 %
 2072 P. OBS. 2    [Pa]     50 -.175E+4  .234E+5  .209E+6  .162E+6  -.510  -.213  .008 11.9 %
 2073 T. PRODUCT.  [C]      50 -.107E+1 -.821E+0  .451E+1  .348E+1   .263  -.017  .237  9.4 %
 2074 T. OBS. 1    [C]      50 -.419E+0 -.404E+0  .536E+1  .430E+1  -.344  -.509  .078 12.6 %
 2075 T. OBS. 2    [C]      50  .134E+1  .172E+1  .497E+1  .403E+1  -.003  -.690  .270 11.6 %
 2076 WATER PROD.  [kg/sec] 50  .125E-1  .677E-2  .200E+0  .161E+0   .306  -.458  .063  1.9 %
 2077 VAPOR PROD.  [kg/sec] 50 -.480E-3  .685E-3  .113E-1  .896E-2  -.235  -.426  .042 14.1 %
 2078 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 2079 ALL RESIDUALS  [-]   456  .119E-2  .859E-2  .993E+0  .789E+0  -.157  -.120  .001  100 %
 2080 =======================================================================================
 2081
 2082
 2083 =======================================================================================
 2084 DATATYPE      DATAPOINTS     MEAN   MEDIAN     SDEV     ADEV   SKEW   KURT   B/S C.O.F.
 2085 ---------------------------------------------------------------------------------------
 2086 PRIOR INFORMATION      6                                                          0.0 %
 2087 PRESSURE    [Pa]     200  .127E+4  .169E+5  .193E+6  .153E+6  -.324  -.010  .007 41.3 %
 2088 FLOW RATE   [kg/sec] 100  .601E-2  .103E-2  .141E+0  .849E-1   .571  2.226  .043 25.0 %
 2089 TEMPERATURE [C]      150 -.483E-1 -.325E+0  .503E+1  .403E+1  -.049  -.340  .010 33.6 %
 2090 =======================================================================================
 2091

Figure 3.7.4.  Statistical moment analysis of residuals.

 2092
 2093 Linear Regression Analysis Calculated Vs. Observed
 2094 --------------------------------------------------
 2095
 2096 ======================================================================
 2097 DATASET               DATAPOINTS     INTERCEPT       SLOPE           R
 2098 ----------------------------------------------------------------------
 2099 P. INJECTION      [Pa]        50     0.794E+06   0.922E+00    0.375414
 2100 P. PRODUCTION     [Pa]        50    -0.437E+06   0.108E+01    0.741147
 2101 P. OBS. 1         [Pa]        50    -0.358E+07   0.139E+01    0.266365
 2102 P. OBS. 2         [Pa]        50    -0.260E+07   0.130E+01    0.257011
 2103 T. PRODUCTION     [C]         50     0.207E+02   0.920E+00    0.410527
 2104 T. OBS. 1         [C]         50     0.217E+03   0.273E+00    0.066226
 2105 T. OBS. 2         [C]         50    -0.180E+05   0.610E+02    0.031780
 2106 WATER PROD.       [kg/sec]    50    -0.203E+01   0.425E+00    0.063968
 2107 VAPOR PROD.       [kg/sec]    50     0.353E-02   0.102E+01    0.939064
 2108 ======================================================================
 2109

Figure 3.7.5.  Linear regression analysis of plot calculated versus observed.
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3 . 8 Model Test and Optimality Criteria

The outcome of the Fisher Model Test (see Table 2.8.3.1) is summarized in Lines 2113–
2120.  The root mean square error and estimated error variance, Equation (2.8.3.1), measure
the overall goodness-of-fit.  If both the stochastic and functional models are correct, the
estimated error variance should not deviate significantly from one, i.e., it should be smaller
than the critical value of the F -distribution shown on Line 2115.  The quantile depends on
the degree of freedom and the confidence level.  Depending on the outcome of the Fisher
Model Test or following the user’s choice (see discussion of Figure 3.3.3, Line 122), the
error analysis is based on either the a priori or a posteriori error variance.  In this example,
the a posteriori error variance was used as a result of the Fisher model test (see Line 2119).
The quantile of the t-distribution given on Line 2120 can be used to construct confidence
intervals according to Equation (2.8.4.6).

The optimality criteria, Equations (2.8.6.1) through (2.8.6.3), are given on Lines 2125–
2127.  The criteria are evaluated using either the actual, unscaled covariance matrix Cpp , or
the one scaled according to Equation (2.8.6.4).  Line 2128 shows the log-likelihood crite-
rion, Equation (2.6.4.2), followed by the model identification criteria after Akaike, Equation
(2.8.6.5), and Kashyap, Equation (2.8.6.6).

 2110
 2111 Fisher Model Test
 2112 -----------------
 2113 Root mean square error             :      0.1005E+01
 2114 Estimated error variance           :      0.1010E+01
 2115 Critical value of F-distribution   :      0.1203E+01
 2116 Degree of freedom                  :             444     (No prior information)
 2117 Confidence level (1-alpha)         :            99.0 [%]
 2118 Lucky you                          : Model test successful!
 2119 Error analysis based on            : a posteriori variance = 0.1009964E+01
 2120 Quantile of t-distribution         :      0.2587E+01
 2121
 2122
 2123 Optimality Criteria                         unscaled         scaled
 2124 -------------------
 2125 D-optimality = det(Cpp)            :      0.2412E-08     0.7358E-25
 2126 A-optimality = trace(Cpp)          :      0.2419E+04     0.3064E+00
 2127 E-optimality = max eigenvalue      :      0.2416E+04     0.9663E+00
 2128 Log-likelihood ln(L)               :     -0.3010E+04
 2129 Akaike  =-2ln(L)+2n                :      0.6031E+04
 2130 Kashyap =-2ln(L)+n*ln(m/2Pi)+ln|F| :      0.6059E+04
 2131

Figure 3.8.1.  Model test and optimality criteria.
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3 . 9 Summary Output

The final block in the output file, reproduced in Figure 3.9.1, shows a summary of the
major inverse modeling results.  The “+” in the first column of Line 2133 indicates that the
Fisher Model Test was successfully passed.  In Lines 2136–2141, the parameters are identi-
fied in Columns 1 through 4, followed by their initial guesses and best estimates.  The
number of significant digits printed in Column 6 depends on the parameter’s estimation
uncertainty, which is reported in Column 8.  The ratio of the conditional and marginal
standard deviation given in Column 9 is the measure of overall parameter correlation,
Equation (2.8.4.4).  Two aggregate sensitivities can be found in Columns 10 and 11.  The
first is the total parameter sensitivity, Equation (2.8.2.5), and the second is the sensitivity of
the objective function with respect to the parameter, Equation (2.8.2.6).

Each iTOUGH2 run is logged in file itough2.log with the date of its completion and the
CPU time used (Line 2144).  The number of error and warning messages is given on Line
2146.

 2132      1         2      3    4     5        6       7       8        9     10    11
 2133 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 2134 PARAMETER    V/L/F ROCKS PAR  INITIAL  ESTIMATE   STANDARD DEVIATIONS  SENSITIVITY
 2135                                                PRIOR  MARGINAL    C/M  OUTPUT   OF
 2136 PERMEABILITY LOG10 FRACT   1 -.13E+2 -.14221E+2  N/A  0.203E-2  0.919  3546.3 4.05
 2137 POROSITY     VALUE FRACT   1  .25E+0     .26E+0  N/A  0.142E+0  0.615    13.6 0.18
 2138 SPEC. HEAT   VALUE FRACT+1 1  .80E+3    .104E+4  N/A  0.491E+2  0.112    53.1 8.37
 2139 HEAT COND.   VALUE FRACT+1 1  .25E+1     .27E+1  N/A  0.321E+0  0.082    46.4 3.92
 2140 SPACING      VALUE -----   1  .20E+2    .575E+2  N/A  0.183E+1  0.141   232.2 6.48
 2141 TEMPERATURE  VALUE DEFAU   1  .25E+3  .30019E+3  N/A  0.112E+0  0.827  2133.0 8.21
 2142 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 2143
 2144 -- 12124th iTOUGH2 simulation job completed: 3-Nov-98 11:13 - CPU time = 972.2 sec
 2145
 2146 --     0 error(s) and  0 warning(s) detected

Figure 3.9.1.  Summary of inverse modeling results.
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3 . 1 0 Version Control

Version control information is always written to the iTOUGH2 message and TOUGH2
output file (unless option NOVER is set), and is appended to the iTOUGH2 output file if
command >>> VERSION is used.  The dimensions of major arrays as specified in the
FORTRAN include file maxsize.inc is reproduced first (Figure 3.10.1), followed by the list
of version control statements shown in Figure 3.10.2.  The list of subroutines touched during
an iTOUGH2 run varies depending on the application.

 =======================================================================================
 ARRAY DIMENSIONS (SEE FILE maxsize.inc)
 ---------------------------------------------------------------------------------------
 MAXEL    = 4000  Maximum number of elements
 MAXCON   = 8000  Maximum number of connections
 MAXK     =    2  Maximum number of components
 MAXEQ    =    3  Maximum number of equations
 MAXPH    =    2  Maximum number of phases
 MAXB     =    8  Maximum number of phase-dependent secondary variables
 MAXSS    =   50  Maximum number of sinks/sources
 MAVTAB   =   20  Maximum average number of table entries per sink/source
 MAXROC   =   50  Maximum number of rock types
 MAXTSP   =    5  Maximum number of specified time steps, divided by eight
 MAXLAY   =   10  Maximum number of reservoir layers for wells on deliverability
 MXRPCP   =    7  Maximum number of parameters for rel. perm. and cap. pres. functions
 MXPCTB   =   30  Maximum number of points in table for ECM capillary pressure
 MXTBC    =   10  Maximum number of elements with time vs. boundary condition
 MXTBCT   =   10  Maximum number of time vs. pressure data
 MAXTIM   =  500  Maximum number of calibration times
 MAXN     =   20  Maximum number of parameters to be estimated
 MAXO     =  100  Maximum number of datasets
 MAXM     = 2000  Maximum number of calibration points
 MAXPD    = 1000  Maximum number of paired data
 MAXR     =   25  Maximum number of elements or indices of each parameter or observation
 MAXBRK   =   20  Maximum number of points in time at which SAVE file is written
 MAXEBRK  =   20  Maximum number of elements with new initial conditions after restart
 MAXCOEFF =    5  Maximum number of coefficients for data modeling functions
 MAXMCS   =  100  Maximum number of Monte Carlo simulations
 MAXCURVE =  100  Maximum number of curves to be plotted
 MAXXGR   =    3  Dimension of third index of array XGUESSR
 MTYPE    =   17  Number of observation types
 MPFMT    =    6  Number of plot file formats
 MAXPV    =    4  Maximum number of primary variables
 ---------------------------------------------------------------------------------------

Figure 3.10.1.  Printout of array dimensions.
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 ---------------------------------------------------------------------------------------
 PROGRAM  VERSON DATE               COMMENT
 ---------------------------------------------------------------------------------------
 iTOUGH2         Current version    iTOUGH2 V4.0 (January 19, 1999)
 ---------------------------------------------------------------------------------------
 iTOUGH   1.0    1 AUGUST    1992   iTOUGH User's Guide, Version 1.0, Report NIB 92-99
 iTOUGH2  2.2    1 FEBRUARY  1994   iTOUGH2 User's Guide, Version 2.2, Report LBL-34581
 iTOUGH2  3.0   12 JULY      1996   YMP Software qualification, Report LBNL-39489
 iTOUGH2  3.1    1 APRIL     1997   iTOUGH2 Command Reference, V3.1, Report LBNL-40041
 iTOUGH2  3.2   30 JUNE      1998   YMP Software qualification, Report LBNL-42002
 iTOUGH2  3.3    1 OCTOBER   1998   Parallelization using PVM, Report LBNL-42261
 iTOUGH2  4.0   19 JANUARY   1999   Report LBNL-40040
 ---------------------------------------------------------------------------------------
 WHATCOM  1.0   10 AUGUST    1993   #35: Q: WHAT COMPUTER IS USED? A: SUN
 CALLSIG  1.0    5 DECEMBER  1995   #112: SIGNAL HANDLER
 CPUSEC   1.0   10 AUGUST    1993   #--: RETURNS CPU-TIME (VERSION SUN)
 OPENFILE 2.5    4 JUNE      1996   #31: OPENS MOST OF THE FILES
 LENOS    1.0    1 MARCH     1992   #28: RETURNS LENGTH OF LINE
 PREC     1.0    1 AUGUST    1992   #86: CALCULATE MACHINE DEPENDENT CONSTANTS
 ITHEADER 3.2   27 MAY       1998   #29: PRINTS iTOUGH2 HEADER
 DAYTIM   1.0   10 AUGUST    1993   #32: RETURNS DATE AND TIME (VERSION SUN)
 THEADER  3.2   27 MAY       1998   #30: PRINTS TOUGH2 HEADER
 INPUT    4.0   19 JANUARY   1999   READ ALL DATA PROVIDED THROUGH FILE *INPUT*,  + IFS
 MESHM    1.0   24 MAY       1990   EXECUTIVE ROUTINE FOR INTERNAL MESH GENERATION
 MINC     1.0   22 JANUARY   1990   "SECONDARY" FRACTURED-POROUS MEDIUM MESH
 PART     1.0   22 JANUARY   1990   READ SPECIFICATIONS OF MINC-PARTITIONING
 GEOM     1.0    1 MAY       1991   CALCULATE GEOMETRY PARAMETERS OF SECONDARY MESH
 PROX     1.0   22 JANUARY   1990   CALCULATE PROXIMITY FUNCTIONS
 INVER    1.0   22 JANUARY   1990   INVERT A MONOTONIC FUNCTION
 MINCME   1.0   14 FEBRUARY  1990   PROCESS PRIMARY MESH, WRITE SECONDARY MESH ON *MINC*
 CHECKMAX 4.0   19 JANUARY   1999   #41: CHECK KEY DIMENSIONS
 FLOPP    1.0   11 APRIL     1991   CALCULATE NUMBER OF SIGNIFICANT DIGITS
 RFILE    4.0   19 JANUARY   1999   INITIALIZE DATA FROM FILES *MESH*, *GENER*, *INCON*
 ITINPUT  1.0    1 AUGUST    1992   # 2: READS COMMANDS OF COMMAND LEVEL 1
 READCOMM 2.5   14 JUNE      1996   #24: READS A COMMAND
 FINDKEY  1.1    4 AUGUST    1993   #25: READS A KEYWORD
 LTU      1.0    1 AUGUST    1992   #26: CONVERTS LOWER TO UPPER CASE
 INPARAME 3.2   20 JUNE      1998   # 3: READS PARAMETERS TO BE ESTIMATED
 INPAR    3.1   17 MARCH     1997   # 4: READS PARAMETER VALUES, WEIGHTS, ETC.
 INELEM   3.1    3 APRIL     1997   #23: READS GRID BLOCK NAME AFTER A COLON
 NEXTWORD 2.5    9 FEBRUARY  1996   #27: EXTRACTS NEXT WORD ON A LINE
 INWBP    3.1   17 MARCH     1997   #11: READS WEIGHT, BOUNDS, ANNOTATION, AND INDICES
 READREAL 1.0    1 AUGUST    1992   #22: READS A REAL AFTER A COLON
 READINT  1.0    1 AUGUST    1992   #21: READS AN INTEGER AFTER A COLON
 INOBSERV 3.3   17 JULY      1998   #12: READS TYPE OF OBSERVATION
 INTIMES  3.1   29 APRIL     1997   #13: READS TIMES AT WHICH OBSERVATIONS ARE AVAILABLE
 INOBS    3.3   17 JULY      1998   #15: READS OBSERVATION INFOS
 INOBSDAT 2.5   13 JANUARY   1996   #17: READS ALL OBSERVED DATA
 INPAIRED 3.1    2 APRIL     1997   #19: READS PAIRED DATA SET
 INWEIGHT 3.2    7 OCTOBER   1997   #20: READS WEIGHTS
 INCOMPUT 1.0    1 AUGUST    1992   #16: READS VARIOUS COMPUTATIONAL PARAMETERS
 INPRINT  4.0   19 JANUARY   1999   #80: READS OUTPUT OPTIONS
 INTOLER  3.3    14 AUGUST   1998   #83: READS TOLERANCE/STOPPING CRITERIA
 INJACOB  1.0    1 AUGUST    1992   #84: READS PARAMETERS FOR COMPUTING JACOBIAN
 INOPTION 3.3   30 SEPTEMBER 1998   #85: READS PROGRAM OPTIONS
 INSELECT 2.5    5 JANUARY   1996   #14: READ OPTIONS FOR PARAMETER SELECTION
 GETINDEX 3.3   17 JULY      1998   #45: GETS INDEX OF ELEMENTS, CONNECTIONS, SOURCES
 INIGUESS 4.0   19 JANUARY   1999   #38: INITIAL GUESS OF PARAMETERS (XGUESS)
 GETNMAT  2.1   21 SEPTEMBER 1993   #44: IDENTIFIES MATERIAL NUMBER
 IXLBXUB  2.1   21 SEPTEMBER 1993   #43: INITIALIZES ARRAY XLB AND XUB
 SETWSCAL 4.0   19 JANUARY   1999   #39: INITIALIZES ARRAY WSCALE

Figure 3.10.2.  Version control statements.
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 OBSMEAN  1.0    1 AUGUST    1992   #40: CALCULATES MEAN OF OBSERVATIONS
 SETXSCAL 1.0    1 AUGUST    1992   #42: INITIALIZES ARRAY XSCALE
 IN_OUT   3.2   20 JUNE      1998   #35: PRINTS A SUMMARY OF INPUT DATA
 TIMEWIND 2.5   30 NOVEMBER  1995   #53: SETS TIME WINDOW
 PRSTATUS 3.1   20 FEBRUARY  1997   #91: PRINTS STATUS MESSAGES
 ERRORMSG 2.5   21 MARCH     1996   #34: PRINTS ERROR MESSAGES
 LEVMAR   2.5   26 MARCH     1996   #99: LEVENBERG-MARQUARDT OPTIMIZATION ALGORITHM
 FCNLEV   3.3   30 JULY   1  1998   #50: RETURNS WEIGHTED RESIDUAL VECTOR
 UPDATE   3.3    7 JULY      1998   #37: UPDATES PARAMETERS
 PRIORINF 2.1   21 SEPTEMBER 1993   #48: PRIOR INFORMATION
 OBSERVAT 3.2   17 JULY      1998   #62: COMPARES MEASURED AND CALCULATED QUANTITIES
 GETMESH  3.2   20 JUNE      1998   #47: READS FILE MESH, MINC, GENER, AND INCON
 GETINCON 4.0   19 JANUARY   1999   #46: READS FILE INCON
 INITTOUG 2.5   18 APRIL     1996   #54: INITIALIZES TOUGH2 RUN (REPLACES CYCIT)
 EOS      1.0   15 AUGUST    1990   *EOS1* THERMOPHYSICAL PROPERTIES MODULE FOR WATER
 SAT      1.0   22 JANUARY   1990   STEAM TABLE EQUATION: SAT. PRES. = F(TEMPERATURE)
 RELP     4.0   19 JANUARY   1999   RELATIVE PERMEABILITIES
 TSAT     1.0   14 MARCH     1991   SATURATION TEMPERATURE AS FUNCTION OF PRESSURE
 PCAP     3.2    1 JUNE      1998   CAPILLARY PRESSURE
 COWAT    1.0   22 JANUARY   1990   LIQUID WATER DENSITY AND INT. ENERGY
 SUPST    1.0   29 JANUARY   1990   VAPOR DENSITY AND INTERNAL ENERGY
 VIS      1.0   22 JANUARY   1990   VISCOSITY OF LIQUID WATER AND VAPOR
 INDATA   4.0   19 JANUARY   1999   PROVIDE PRINTOUT OF MOST INPUT DATA
 BALLA    3.3   17 JULY      1998   SUMMARY BALANCES FOR VOLUME, MASS, AND ENERGY
 CALLTOUG 3.1    2 APRIL     1997   #55: CALLS TOUGH2 FOR ONE TIME STEP
 TSTEP    3.1   27 MARCH     1997   ADJUST TIME STEPS TO COINCIDE WITH TARGET TIMES
 MULTI    4.0   19 JANUARY   1999   ASSEMBLE ALL ACCUMULATION AND FLOW TERMS
 QU       1.02  18 FEBRUARY  1993   ASSEMBLE ALL SOURCE AND SINK TERMS
                                    "RIGOROUS" STEP RATE CAPABILITY FOR MOP(12) = 2
 LINEQ    0.91CG31 JANUARY   1994   INTERFACE FOR LINEAR EQUATION SOLVERS
                                    CAN CALL MA28 OR A PACKAGE OF CONJ. GRADIENT SOLVERS
 MC19A                              HARWELL SUBROUTINE FOR SCALING MATRIX
 VISW     1.0   22 JANUARY   1990   VISCOSITY OF LIQUID WATER
 CONVER   2.5   13 JUNE      1996   UPDATE PRIMARY VARIABLES AFTER CONVERGENCE
 OUT      1.0   15 AUGUST    1990   PRINT RESULTS FOR ELEMENTS, CONNECTIONS, SINKS
 OBSERVED 2.4    4 AUGUST    1996   #78: RETURNS OBSERVED DATA AS A FUNCTION OF TIME
 OBJFUN   4.0   29 JANUARY   1999   #49: COMPUTE OBJECTIVE FUNCTION
 WRITEPAR 1.0   17 JUNE      1996   #56: WRITE BEST FIT PARAMETER SET AND BLOCK ROCKS
 PLOTFILE 4.0   19 JANUARY   1999   #58: WRITES PLOTFILE IN PLOPO-FORMAT
 RANDOM   1.0    1 AUGUST    1992   #71: RANDOM NUMBER GENERATOR
 JAC      4.0   19 JANUARY   1999   #51: CALCULATES FINITE DIFFERENCE JACOBIAN
 MLLAMBDA 2.2   14 FEBRUARY  1994   #67: ESTIMATES NEW LAMBDAS
 VISS     1.0   22 JANUARY   1990   VISCOSITY OF VAPOR AS FUNCTION OF TEMPERATURE
 TERMINAT 3.3   28 OCTOBER   1998   61: PERFORM ERROR ANALYSIS AND TERMINATE iTOUGH2
 WRIFI    4.0   19 JANUARY   1999   WRITE PRIMARY VARIABLES ON FILE *SAVE*
 QFISHER  3.3   22 OCTOBER   1998   QUANTILE OF F-DISTRIBUTION
 FISHER   1.0   22 OCTOBER   1998   F-DISTRIBUTION
 BETAI    1.0   22 OCTOBER   1998   INCOMPLETE BETA FUNCTION
 GAMMLN   1.0   22 OCTOBER   1998   GAMMA FUNCTION
 BETACF   1.0   22 OCTOBER   1998   CONTINUED FRACTION EVALUATION
 EIGEN    3.2   14 AUGUST    1997   #59: PERFORMS EIGENANALYSIS
 LOGLIKE  2.1   29 SEPTEMBER 1993   #68: COMPUTE LOG-LIKELIHOOD
 QNORMAL  2.5   13 JANUARY   1996   #87: RETURNS QUANTILE OF NORMAL DISTRIBUTION
 MOMENT   3.3   28 OCTOBER   1998   #90: MOMENTS OF DISTRIBUTION
 SORT     3.1   17 APRIL     1997   #113: SORTS ARRAY
 MOMENT   3.1   17 APRIL     1997   #75: LINEAR REGRESSION ANALYSIS
 QSTUDENT 1.0   22 OCTOBER   1998   QUANTILE OF STUDENT T-DISTRIBUTION
 STUDENT  1.0   22 OCTOBER   1998   STUDENT T-DISTRIBUTION
 PLOTIF   1.0   15 FEBRUARY  1993   #96: PLOT INTERFACE
 REFORMAT 1.1   15 APRIL     1993   #97: REFORMATS PLOT FILES
 QUOTES   1.0   15 FEBRUARY  1993   #98: RETURNS TEXT BETWEEN QUOTES

Figure 3.10.2. (cont.)  Version control statements.
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4 . PROGRAM ARCHITECTURE

4 . 1 Program Structure

iTOUGH2 is written in a modular form.  Figure 4.1.1 shows the program architecture in a
simplified flow chart.  The program first reads the TOUGH2 input deck, which defines the
forward problem.  The required TOUGH2 input may vary depending on the module used.  In
the iTOUGH2 input file, the user defines the parameters to be estimated, provides the data and
the associated measurement errors, and selects program options such as the objective
function, the minimization algorithm, the output format, and convergence criteria.
Optimization is then initiated, iteratively updating parameter vector p and calling TOUGH2
for the calculation of the system response, z .  Some of the forward calculations may be
performed in parallel using PVM [Finsterle, 1998b].  The optimization routines of iTOUGH2
communicate with the TOUGH2 simulator through selected COMMON blocks shared by both
modules.  This program architecture allows one to update both the forward and the inverse
part of the code more or less independently.
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Figure 4.1.1.  Simplified iTOUGH2 flow chart.
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The architecture of iTOUGH2 allows for safe and convenient maintenance of the program.
The code was developed based on the following principles:

- Each subroutine contains an IMPLICIT NONE statement, i.e., each constant and
variable used in iTOUGH2 is explicitly declared.

- All COMMON blocks holding major arrays are defined in FOTRAN include files,
ensuring that modifications are made consistently throughout the code.

- Array dimensions are given by constants, which are defined using PARAMETER state-
ments in FORTRAN include file maxsize.inc (see Section 5.1).  This allows for
convenient redimensioning of arrays and ensures consistency of array sizes.

- Variables of different types are stored in separate COMMON blocks for efficient align-
ment.

- Compilation is supported by a Makefile.  The dependencies specified in the makefile
ensure that all files affected by a change are recompiled and properly linked.

- Checks are made within iTOUGH2 to ensure that a given array is sufficiently large to
accommodate the problem to be solved.  If an array index is greater than the size of the
array, an error message is issued indicating the constant that must be increased.

- For traceability, array dimensions used for a specific run as well as version control state-
ments are reported in output files (see Section 3.10).

- Subroutines and functions containing machine-dependent system calls are isolated (see
files mdep$COMP.f, where $COMP is the name of a computer platform).

- iTOUGH2 was tested on different platforms to enhance portability.

- The use of non-ANSI FORTRAN extensions is minimized.
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5 . 2 Directory Structure

It is recommended that the installation of iTOUGH2 on Unix machines be performed
according to the instructions in this section.  However, different file structures can be chosen,
requiring minor modifications of the utility script files (see Section 6).

The iTOUGH2 source files and executables are expected to be stored in the iTOUGH2
home directory $HOME/itough2 or $HOME/itough2v$VERS, where $HOME is the user’s
home directory name.  If iTOUGH2 is installed in $HOME/itough2v$VERS, where $VERS
is a version identifier, the -v option (see Section 6.2) must be used at run time to indicate
which version should be selected.  If option -v is not given on the command line, the
executable installed in directory $HOME/itough2 is used.

The source code is comprised of files with extensions .f and .inc.  The FORTRAN
include files contain the COMMON blocks and constants for dimensioning of major arrays
(see Section 5.2).  The executable is named itough2_$EOS.$HOST, where $EOS identifies
the equation-of-state module, and $HOST is the name of the Unix host.

iTOUGH2 is executed using a Unix shell script file itough2 (see Section 6.2), expected to
be stored in a subdirectory $HOME/bin, which should be added to the Unix command search
path.  iTOUGH2 input files can be stored in any directory.  For each iTOUGH2 run, the shell
script creates a temporary directory with the unique name $HOME/it2_$PID, where $PID is
the process identifier.  All input files are copied from the arbitrary working directory to this
temporary directory, before iTOUGH2 is started.  After termination of the run, the most
important output files are copied back to the working directory.  The temporary directory is
then removed, unless command option -no_delete is set (see Section 6.2).  During
execution, command prista can be invoked to check the status file in the temporary
directory (see Section 6.4).  Furthermore, command kit allows a user to send signals to
iTOUGH2 applications to gracefully terminate the run (see Section 6.5).  Finally, command
it2help searches file $HOME/itough2/it2help.txt and displays manual pages of
iTOUGH2 commands (see Section 6.6).  The recommended directory structure is visualized
in Figure 4.2.1.  Directory names are underlined, file names are printed in bold, and
environment and shell variables to be set by the user are in italics.
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Figure 4.2.1.  iTOUGH2 directory structure.
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4 . 3 iTOUGH2 Input and Output Files

Table 4.3.1 shows the names and contents of iTOUGH2 input and output files.  Input file
names are arbitrary, and are specified at the time an iTOUGH2 job is submitted (see Section
6.2).  The output file names are by default a combination of the TOUGH2 and iTOUGH2
input file names and a predefined three-character extension.  Some of the output file names
can be changed upon job submission.

The Unix shell script itough2 (see Section 6.2) writes a file itough2.fil with the names of
the working directory, temporary directory, TOUGH2 input file, iTOUGH2 input file, as well
as the arguments submitted to the shell script.  This information allows iTOUGH2 to access
the appropriate input files.

The user must provide at least two input files to run iTOUGH2.  The first one is a
TOUGH2 input file in standard TOUGH2 format as described in Pruess [1987, 1991a,
1991b], Finsterle et al. [1994], Falta et al. [1995], Moridis and Pruess [1995], Battistelli et
al. [1997], Finsterle  [1998a], and Finsterle [1999b; Appendix A], as well as other publica-
tions pertaining to particular TOUGH2 modules and code enhancements.  This input file
defines the conceptual model, i.e., the forward problem, which must run successfully not
only for the initial parameter set, but also for a wider range of parameter combinations that
may potentially arise during the iTOUGH2 run.

The second input file is the iTOUGH2 input file, in which the user specifies the parame-
ters to be estimated, the observations used for calibration, and various program options.  The
basic concepts of the iTOUGH2 input language and a detailed description of each iTOUGH2
command are given in Finsterle [1998b, 1999bc].

Additional TOUGH2 input files may be given with information about the mesh, sinks and
sources, and initial conditions.  Furthermore, initial parameter guesses and calibration data
can be provided either in the iTOUGH2 input file or on separate data files, with their names
specified in the iTOUGH2 input file.  All these additional input files are optional and depend
on the TOUGH2 and iTOUGH2 options invoked.

iTOUGH2 creates a number of output files.  In addition to the standard TOUGH2 output
files, iTOUGH2 generates a main output file with information about the minimization
process, the sensitivity coefficients, the residuals, the estimated parameters and their uncer-
tainties; an example is described in Section 3.  Furthermore, separate output files are gener-
ated upon request with the best estimate parameter set and corresponding TOUGH2 ROCKS
block, the covariance matrix of the calculated system response, the observed data and the
modeling result for plotting purposes, and a plot file with the relative permeability and capil-
lary pressure curves.  The message file, which contains Unix standard error and standard
output information along with version control statements, should be consulted whenever
execution problems persist.
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Table 4.3.1.  List of iTOUGH2 Input and Output Files

Filenames
Generic Example File Content

Input Files

- itough2.fil Names of working directory and input files
dir_file test.inp* Standard# TOUGH2 input file (forward problem)
inv_file testi.inp* iTOUGH2 input file (inverse problem)
dat_file pressure.dat Measured data
par_file testi.par Initial parameter guesses
$dir_file.mes coarse.mes Elements and connections (TOUGH2 file MESH)
$dir_file.ini equi.ini Initial condition information (TOUGH2 file INCON)
$dir_file.gen sinks.gen Sinks and sources (TOUGH2 file GENER)

Output Files

- itough2.ver& Version control statements
- status& Current status (updated after each forward run)
- fort.99& File used for debugging
$dir_file.out test.out@ Standard# TOUGH2 output file
$dir_file.sav test.sav Primary variables for restarting (TOUGH2 file SAVE)
$dir_file.mes test.mes Mesh information (TOUGH2 file MESH)
$dir_file.min test.min Mesh information after MINC preprocessing
$dir_file.ini test.ini Initial conditions written from block INCON in dir_file
$dir_file.lin test.lin Messages on linear equation solution
$dir_file.tab test.tab Data from semi-analytical heat exchange calculation
$inv_file.out testi.out@ Main iTOUGH2 output file
$inv_file.tec testi.tec@% Plot file showing match
$inv_file.err testi.err& Summary error mesages
$inv_file.msg testi.msg@+ iTOUGH2 message file
$inv_file.par testi.par@ Best estimate parameter set and ROCKS block
$inv_file_ch.tec testi_ch.tec% Relative permeability and capillary pressure curves
$inv_file.cov testi.cov Covariance matrix of calculated system response

* These files are mandatory; all other input files are optional and depend on various program options.
# See pertaining user’s guide, source code, and Appendix A of report “iTOUGH2 Command Reference.”
@ These files are automatically returned to the working directory.
% The extension depends on the chosen plotformat (see command >>> FORMAT).
& Contents appended to file inv_file.out and/or inv_file.msg after completion of run.
+ If using script file tough2, the message file name is t2.msg.
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5 . CODE INSTALLATION

5 . 1 Getting Started

This section describes the installation of iTOUGH2 on a Unix workstation, assuming that
the source code, shell script files, and sample problem input files are distributed as a
compressed archive file it2_tar.Z.  The installation procedure may vary if iTOUGH2 is
distributed differently, or if it is not installed in the directory structure shown in Figure 4.2.1.
Additional instructions can be found on file read.me and in the header of the Makefile and the
Unix shell script files itough2, tough2, prista, kit, and it2help.  Installation and execution of
iTOUGH2 on a PC is different; see instructions in file read.me.

Table 5.1.1.  Code Installation Procedure

Step 1: Create the iTOUGH2 home directory:
cd; mkdir itough2

If multiple iTOUGH2 versions must be accessible, they should be  installed in
separate directories itough2v$VERS, where $VERS is a version
identifier to be used with the -v option at run time:
cd; mkdir itough2v$VERS

Step 2: Move the iTOUGH2 distribution file(s) to the iTOUGH2 home directory.

Step 3: Go to the iTOUGH2 home directory and extract all files from the distribution.
If iTOUGH2 is distributed as a compressed tar file it2_tar.Z, the following
command sequence establishes the directory structure shown in Figure 4.2.1:
uncompress it2_tar.Z; tar xvf it2_tar

Step 4: Customize iTOUGH2, as necessary:
• Set the maximum problem size in file maxsize.inc (see Section 5.2).
• Set default format of plot file (see file it2main.f, BLOCK DATA IT,

variable IPLOTFMT).
• Add code to file it2user.f to provide user-specified parameters,

observations, boundary conditions, and data definitions.
• Provide machine-dependent system calls if ported to a new platform not

supported by iTOUGH2 (see files mdep$COMP.f, where $COMP is the
name of a computer platform).

Step 5: Edit Makefile and compile iTOUGH2 (see Section 5.3).

Step 6: Install and customize Unix shell script files (see Section 6).

Step 7: Test installation by running sample problems [Finsterle, 1999c].
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5 . 2 Dimensioning of Major Arrays

Problems solved by iTOUGH2 vary considerably in size, depending on the number of
gridblocks and connections, the number of equations solved per gridblock, the number of
parameters estimated, the number of observations available, etc.  It is important to be able to
adjust the dimensions of major arrays to make the code fit on a specific computer with limited
memory.  Because iTOUGH2 is written in FORTRAN77, no dynamic memory allocation is
possible, i.e., arrays are redimensioned by changing their size in the source code, followed
by recompilation.

The user must set the appropriate constants in file maxsize.inc.  The constants of greatest
impact on memory requirement are MAXEL, MAXCON, MAXN, and MAXM.  The number
of mass components, phases, and balance equations per gridblock is given by MAXK,
MAXPH, and MAXEQ, respectively.  Note that they must be set to the maximum number
required by the chosen equation-of-state module, regardless of the values given in TOUGH2
block MULTI.  For example, if EOS7 is used [Pruess, 1991b], MAXK must be set to 3 and
MAXEQ to 4, even though the model may be run in isothermal mode with no air involved,
i.e., with NK=2 and NEQ=2.  If an array is improperly dimensioned, iTOUGH2 issues a
corresponding error message.

5 . 3 Compiling and Linking

A Makefile is provided for convenient compilation of iTOUGH2 on Unix workstations.
File Makefile must be edited to indicate the desired equation-of-state (EOS) module and to
provide the name of the FORTRAN compiler as well as various compiler options, which are
specific to the computer platform.  Table 5.3.1 shows some of the Makefile variables that
must be set by the user.  Compiler options are provided for most Unix platforms and the PC
compilers by Lahey® and Compaq® Visual Fortran (formerly DIGITAL Visual Fortran).  It
is expected that iTOUGH2 can be compiled using other compilers with minor modifications
(see file read.me for additional information).  If the Makefile is used, the appropriate options
can be selected by deleting the pound sign (#) in the first column, and by commenting out the
portions of the Makefile that do not apply.

Depending on the compiler used, a linking error may occur if a subroutine is specified
more than once, as is the case for eos9.f and eos10.f.  In these instances, the user must
ensure that the subroutine encountered first in the list of source files (see variables OBJxxx in
Table 5.3.1) is linked to iTOUGH2, i.e., the subroutine in the second file must be renamed.
For example, there are two versions of subroutine MULTI, one in file eos9.f, another in file
t2f.f.  If setting EOS=9, the subroutine has to be renamed (e.g., to MULTIx) in file t2f.f .

Table 5.3.2 shows the different targets defined in the Makefile.  For example, in order to
make a standard iTOUGH2 executable for the equation-of-state module defined through
variable EOS, one must simply type make.  For example, iTOUGH2-PVM [Finsterle,
1998b] is created by typing make pvm.
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Table 5.3.1.  Variable Definitions in Makefile

Variable Description Examples

EOS Equation-of-state module
identifier

5 to compile and link eos5.f
(see files eos$EOS.f)

COM Name of computer platform ibm, sun, dec, sgi, hp, cray, etc.

(see files mdep$COM.f)

FOR Compiler name f77, f90

COO Compiler options -c -O3 (see manual pages of compiler $FOR)

LIN Linking options +U77 (see manual pages of compiler $FOR)

EXS Extension of source files f, FOR

EXO Extension of object files o, OBJ

EXE Extension of executable $hostname, EXE

LPVM Location of PVM library see Finsterle [1998b]

OBJSTD List of files for
standard iTOUGH2

it2main, it2input, it2xxxx, it2user,
mdep$COM, eos$EOS, t2cg1, t2f, meshm,
ma28, ifsdummy#, gslibdum, pvmdummy#

# In order to invoke IFS [Doughty, 1995] and PVM [Finsterle, 1998b] capabilities,
ifsdummy and/or pvmdummy, which contain subroutine stubs, must be replaced by ifs or pvm, 
respectively (see variables OBJIFS and OBJPVM in Makefile).

Table 5.3.2.  Targets in Makefile

Target Executable/Action Comment

make Creates standard iTOUGH2
tough2_$EOS.$EXE

Rename# subroutine MULTI in file t2f.f
if EOS=9.

Rename# subroutines INPUT, MULTI,
RELP, and PCAP in file t2f.f if
EOS=10.

make pvm Uses OBJPVM and links
iTOUGH2 to PVM library

Parallel execution of forward runs on
workstation cluster [Finsterle, 1998b].

make ifs Uses OBJIFS and links IFS
subroutines to iTOUGH2

Includes subroutines for generating
heterogeneous fields based on Iterated
Function Systems [Doughty, 1995].

make pcf77
make pcf90

Creates iTOUGH2 on PC Supports Lahey® compiler f77l3.
Supports Lahey® compiler lf90.

make tar
make zip

Creates archive file itough2.tar
Creates archive file itough2.zip

Creates tar or zip file with iTOUGH2
source code and sample problems.

# Renaming is only necessary if compiler/linker does not accept multiply defined subroutines.
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6 . UTILITIES

6 . 1 Installation of Unix Shell Script Files

The iTOUGH2 distribution includes five Unix shell script files: itough2, tough2, prista,
kit, and it2help.  While iTOUGH2 can be run by typing the name of the executable, use of the
Unix script files discussed in this section adds convenience and increases safety.  A Unix
script file is a command file that contains a shell program, and—if properly installed—can be
invoked like any other Unix command, i.e., simply by typing the file name (e.g., the script
file kit is invoked by typing kit).  The five script files discussed here make use of the
Bourne shell (/bin/sh); they can be executed from any shell.

The five Unix shell script files are assumed to be installed in a directory $HOME/bin,
where $HOME is the user's login directory.  The directory must be part of the search path
where the shell looks for commands.  It is suggested to add the following line to file .cshrc:

set path=($path ~/bin)

All script files must be executable; if not, type:

cd ~/bin; chmod a+x itough2 tough2 prista kit it2help

If the directory structure is different from that shown in Figure 4.2.1, the user must
redefine some of the shell variables according to Table 6.1.1.  The default values assume that
iTOUGH2 is installed as described in Section 4.2.  Script file kit requires identifying a
suitable option for Unix command ps, which varies with the Unix flavor.  If typing
“ps $ps_opt” during the execution of an iTOUGH2 run, the command output must
contain the process ID and the string “itough2_”.  Depending on the selected option
ps_opt, the process ID appears in either the first or the second column (ipid = 1 or 2).
Command line awk `{print $ipid}` near the end of file kit must be adjusted accord-
ingly (for more details see header of file kit).

Table 6.1.1.  Customizing Shell Variables in iTOUGH2 Script Files

Script File Shell Variable Default Description

itough2 prog_dir $HOME/itough2 iTOUGH2 home directory
tmp_dir $HOME Main temporary directory

tough2 script_dir $HOME/bin Directory of itough2 script file
prista tmp_dir $HOME Main temporary directory
kit ps_opt ux Option for UNIX command ps
it2help help_dir $HOME/itough2 Directory of file it2help.txt
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6 . 2 Submitting an iTOUGH2 Job (Command itough2)

Shell script file itough2 should be used to submit an iTOUGH2 job on a Unix worksta-
tion.  The command usage, reproduced in Figure 6.2.1, can be displayed by typing
itough2 without any arguments.

 ===============================================================================
 iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2
 ===============================================================================

 Script file   : /m/presto/u/finster/bin/itough2

 Syntax
 ------

 itough2 [Options] InverseFile ForwardFile EOS &

 InverseFile : iTOUGH2 input file
 ForwardFile : TOUGH2 input file
 EOS         : EOS module identifier

 Options
 -------
 -no_delete  : temporary directory /m/presto/u/finster/it2_29321 is not deleted
 -m file     : copies $file to temporary directory as input file MESH
 -i file     : copies $file to temporary directory as input file INCON
 -g file     : copies $file to temporary directory as input file GENER
 -fi file    : copies $file to temporary directory
 -ito file   : names iTOUGH2 output $file instead of $InverseFile.out
 -to file    : names TOUGH2 output $file instead of $ForwardFile.out
 -save file  : names output file SAVE $file instead of $ForwardFile.sav
 -mesh       : returns output file MESH to working directory as $ForwardFile.mes
 -lin        : returns output file LINEQ to working directory as $ForwardFile.lin
 -plo        : returns output file PLOPO to working directory as $InverseFile.plo
 -cov        : returns covariance file to working directory as $InverseFile.cov
 -fo file    : returns $file from temporary directory to working directory
 -v vers     : uses version in directory ~/itough2v$vers
 -pvm        : runs iTOUGH2 in parallel under PVM

 Examples
 --------
 itough2 sample1i sample1 3 &
 itough2 -mesh dummi meshm.inp 1 &
 itough2 -i equil.inc -m coarse.mes inverse.inp t2voc.inp 10 &
 itough2 -pvm -no_delete pvmtesti test 9ecm &

Figure 6.2.1.  Usage and options of command itough2.

The general command syntax is:

itough2 [options] InverseFile ForwardFile EOS &

Command itough2 is followed by at least three arguments in the following order: (1) the
name of the iTOUGH2 input file, (2) the name of the TOUGH2 input file, and (3) an indicator
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of the EOS module being used (usually a number).  Additional options discussed below may
precede the three mandatory arguments.  iTOUGH2 should always be run in the background
(i.e., add “&” at the end of the command line) to allow usage of commands prista  and
kit.  Example:

command           TOUGH2 input file    background

  ↓                   ↓         ↓
itough2 samplei.inp sample.inp 3 &
              ↑                     ↑
         iTOUGH2 input file                Number of EOS module

Submitting this command line has the following effect.  A temporary directory is created
named $(tmp_dir)/it2_$$, where $(tmp_dir) is the directory specified by shell variable
tmp_dir (see Table 6.1.1), and $$ is a unique process ID number.  The specified input
files are copied from the working directory to the temporary directory.  iTOUGH2 is started
where the name of the executable depends on the EOS module requested.  In this example,
EOS3 is used.  After completion of the run, the main output files are copied from the tempo-
rary to the working directory, and the temporary directory is deleted unless flag
-no_delete is specified or the program was terminated with an error signal.

Some iTOUGH2 runs may require additional input files containing mesh information,
initial conditions, sinks and sources, or other special data.  These files must be explicitly
specified using flags -m, -i, -g, and -fi, respectively, followed by the appropriate file
name.  (All data and input files explicitely specified in the iTOUGH2 input file do not need to
be given on the command line.)  For example, if the TOUGH2 blocks ELEME and CONNE
are provided on a separate file named coarse.mes, the command reads:

itough2 -m coarse.mes -v 3.2 samplei.inp sample.inp 3 &

By default, only the main output files are returned to the working directory, before the
temporary directory is deleted.  If additional files should be preserved, such as the mesh files
MESH and MINC, the linear equation file LINEQ, the PLOPO plot file, or the covariance file
of the calculated system response, the flags -mesh, -lin, -plo, and -cov must be
set, respectively.  Finally, the default names of the iTOUGH2 output file, the TOUGH2
output file, and the TOUGH2 SAVE file can be changed using options -ito, -to, and
-save, respectively, followed by the desired file name.  Example:

itough2 -i test.sav -save test.sav2 -mesh testi test 10 &

In this example, initial conditions are not provided through the TOUGH2 input file test,
but are read from file test.sav, which apparently is the SAVE file from a previous run.  In
order not to overwrite this file, the default file name for the current SAVE file is changed to
test.sav2.  The MESH file generated by this run is returned to the working directory with
name test.mes.  This is an inversion using the T2VOC simulator [Falta et al., 1995]; its EOS
number is 10.
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6 . 3 Submitting a TOUGH2 Job (Command tough2)

iTOUGH2 can also be used to run standard TOUGH2 simulations.  There are several
advantages of using iTOUGH2 for forward runs: (1) only one version of the simulation
program has to be installed and maintained; (2) the exact same code is used for solving both
the forward and inverse problem, reducing the risk of introducing errors when modifying the
programs; (3) additional program features are available (see Finsterle [1999b; Appendix A]);
and (4) a forward run can be observed and terminated using commands prista and kit,
respectively.

The general command syntax is:

tough2 [options] ForwardFile EOS &

Command tough2 is followed by two arguments in the following order: (1) the name
of the TOUGH2 input file, and (2) an indicator of the EOS module being used (usually a
whole number).  Additional options may precede the mandatory arguments.  They are the
same as those for command itough2 (see Section 6.2).

Command tough2 calls shell script file itough2 with a dummy iTOUGH2 input file
invdir, which is expected to be present in directory $(prog_dir) (see Table 6.1.1).  There is
only minimal overhead associated with reading the dummy input file and writing additional
output.  The name of the message file created by command tough2 is always t2.msg.

6 . 4 Status Checking of an iTOUGH2 Job (Command prista)

The progress of an iTOUGH2 can be observed using command prista, which
accesses file status in the temporary directory.  File status is updated after each forward simu-
lation, and contains iteration statistics, information about the current parameter set, and the
development of the objective function.

If more than one iTOUGH2 simulations are running at the same time, the user is first
prompted to select which run shall be checked (see Figure 6.4.1).  Then, the contents of file
status are displayed.  The current parameter set is printed along with the latest and total
update.  The sensitivity measure δ = ∂S  (Equation 2.8.2.6) shows the change of the objec-
tive function if the parameter is perturbed by a small amount.  Lastly, information about the
objective function is given, with its current value, the update due to the perturbation of the
parameter indicated by the arrow <---, and the total improvement with respect to the initial
value printed in the last column.



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 118 UTILITIES

your_prompt> prista

 ID      STIME   DIRECTORY   ARGUMENTS
  1 -->  09:29   it2_87631   -tough2 test 9
  2 -->  09:31   it2_87633   sam2p1i sam2 3
  3 -->  09:32   it2_87639   -fi atmos.dat sam5i sam5 3

 Enter ID: 2

 ==================================================================
      S T A T U S   O F   i T O U G H 2   S I M U L A T I O N
 ==================================================================

 Date                        : 23-Nov-98 09:33
 iTOUGH2 file                : sam2p1i
 TOUGH2 file                 : sam2
 Working directory           : /m/presto/u/finster/itough2/samples/sample2
 Temporary directory         : /m/presto/u/finster/it2_29625
 UNIX command line arguments : sam2p1i sam2 3
 Comment                     : No fit improvement. Jacobian (forward).

 Iterations completed        :              1    Iterations to go      7
 TOUGH2 runs completed  (+/-):         8/   0    Unsuccessful steps    0
 TOUGH2 runs to go (approx.) :             43    Log(Levenberg)       -3
 CPU time used     [sec]     :          41.63    for last step      5.48

     Parameter            Current  Last Update Total Update        Sens. Active
  1. ABS. K GEYS1+8 :  -.1939E+02   -.3917E+00   -.3917E+00      937.787
  2. KLINK GEYS1+8  :   .6543E+01   -.4569E+00   -.4569E+00      871.680
  3. POROSITY GEYS1+:   .1080E-01   -.4311E-02   -.4311E-02       24.210 <---

     TOUGH2 run No. :           8       8 -  5       5 -  1      Initial
     Obj. Function  :   .6016E+05    .2421E+02   -.2572E+06    .3174E+06

Do you want to read an output file?

 1 --> sam2.out
 2 --> sam2p1i.out
 * --> another file

Enter file No. plus v(i) or t(ail): 2

Figure 6.4.1. Screen dump from command prista.

The user has then the opportunity to look at some of the output files using either the vi-
editor or Unix command tail.  If the file number is given, command tail is invoked,
displaying the last 10 lines of the chosen output file.  The tail command continues to
display lines as they are added to the output file until stopped by pressing the Ctrl-C key
sequence.  In order to user the vi-editor, the file number has to be followed by the character
v.  Note that the file should not be modified since it is continuously updated by iTOUGH2.

Command prista allows a user also to inspect a TOUGH2 simulation.  If deemed
necessary, the run can be gracefully terminated using command kit (see Section 6.5).
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6 . 5 Terminating an iTOUGH2 Job (Command kit)

An iTOUGH2 run can be interrupted and in particular gracefully terminated using
command kit, which sends a signal to the process running iTOUGH2.  A signal handler is
installed (see file mdep$COMP.f) to trigger the desired action.  Command kit is usually
used after checking the status of an iTOUGH2 run using command prista (see Section
6.4).  The signal numbers and their effects are described in Table 6.5.1.

Table 6.5.1.  Signals Sent by Command kit

Signal Effect

0 Exit shell script (no action taken).

1 Terminates iTOUGH2 immediately, but gracefully.

2 Terminates iTOUGH2 after completion of the current forward run.  The Jacobian
matrix used for the error analysis may contain columns that are from the previous
evaluation.  The corresponding parameter sensitivities are printed in brackets []
in the iTOUGH2 output file.

3 Terminates iTOUGH2 after completion of the next time step.  The system state is
written to the TOUGH2 output file (even if a negative value is specified for variable
KDATA; see Finsterle [1999b; Appendix A2]).  This option is useful especially for
long TOUGH2 runs.  A run can be terminated at any time and later restarted using
the returned SAVE file $dir_file.sav.

4 Terminates iTOUGH2 after completion of next iTOUGH2 iteration.

5 TOUGH2 output is generated after completion of the next time step; the run
continues.

6 The output buffers are flushed% so the full content of the output file can be seen
during the run using command prista.

7 An iTOUGH2 run is stopped without terminating it (sends signal STOP).#

8 An iTOUGH2 run previously stopped using Signal 7 is continued (sends signal
CONT).#

9 Kills run immediately and abruptly  (sends signal KILL).

10 A previously submitted Signal 2, 3, or 4 is canceled.
% Not necessary if output is not buffered.
# Does not work on Sun workstations using Solaris.

Figure 6.5.1 shows a screen dump from command kit.  If multiple iTOUGH2 inver-
sions are running at the same time, they are listed and numbered.  The information displayed
depends on the option of Unix command ps (see ps_opt in Table 6.1.1).



_________________________________________________________________________

iTOUGH2 USER’S GUIDE 120 UTILITIES

your_prompt> kit

 #     USER       PID %CPU %MEM   SZ  RSS    TTY STAT    STIME  TIME  COMMAND
 1 --> finster  13181 49.8  3.0  876 1668  pts/0 R    15:45:56 31:56  itough2_1.itelos
 2 --> finster  13997 76.8  3.0  872 1664  pts/0 R    14:25:55 110:47 itough2_3.itelos

Select iTOUGH2 run by number : 2

  0: exit
  1: terminate immediately
  2: terminate after completion of TOUGH2 run
  3: terminate after completion of TOUGH2 time step
  4: terminate after completion of iTOUGH2 iteration
  5: print output now
  6: flush output buffers
  7: sleep
  8: wake up
  9: kill run
 10: cancel previous signal

Choose signal: 6

Signal 6 sent to process 13997

Figure 6.5.1. Screen dump from command kit.

The command kit sometimes fails to recognize a Unix process as an iTOUGH2 run.
In these cases, iTOUGH2 can be killed manually using command:

kill -SIGNAL PID

where SIGNAL is the signal number of Table 6.5.1, and PID is the process ID of the
iTOUGH2 executable with the command name $prog_dir/itough2_$EOS.$HOST.
Do not kill the shell script itough2 or tough2.  If either of these script commands is
killed, the actual iTOUGH2 simulation in fact keep running but fails to return the output files
from the temporary to the working directory after its completion.  Moreover, the temporary
directory is not removed, making it reappear whenever command prista is used.  In
order to remove left behind temporary directories, type:

rm -r ~/it2_*
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6 . 6 Obtaining On-line Help (Command it2help)

The content of Finsterle [1999b; Section 4] can be accessed on-line at the web site
http://www-esd.lbl.gov/iTOUGH2 , by clicking on “Command Index”.
Alternatively, command it2help can be used, followed by the command name and,
optionally, the command level.  Type it2help to display the command usage (see Figure
6.6.1).  There are three special commands.  In order to display the complete iTOUGH2
command index (see Finsterle [1999b; Appendix B]), type:

it2help index

The following command displays iTOUGH2 update information:

it2help update

The following command displays the iTOUGH2 log book $prog_dir/itough2.log:

it2help logbook

The manual pages are stored on file it2help.txt.  The content of this file is continually
updated to include added features of later versions of iTOUGH2.

  ===================================================================
  IT2HELP --- IT2HELP --- IT2HELP --- IT2HELP --- IT2HELP --- IT2HELP
  ===================================================================

  Purpose:

  Displays iTOUGH2 manual pages on-line.

  Syntax:

  it2help command [command_level]

    command       = iTOUGH2 command
    command_level = integer indicating command level (1, 2, 3, or 4)

  Examples:

  1. it2help iteration
     Prints manual pages of command ITERATION on all command levels.

  2. it2help iteration 3
     Prints manual page of third-level command >>> ITERATION.

  3. it2help index
     Prints the iTOUGH2 command index.

  4. it2help update
     Prints version update information.
  ===================================================================

Figure 6.6.1.  Screen dump from command it2help showing command usage.
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INDEX

A
Akaike, 73, 100
Andrews estimator, 36
annealing schedule, 48
annotation, 8
A-optimality, 38, 72
a priori, 23, 27, 92, 100
a posteriori, 28, 59, 92, 100

B
bias, 35, 38, 57

C
calibration point, 7, 10, 19, 82, 84
Cauchy, 36
central limit theorem, 30
confidence region, 61, 65, 72
consistency, 22, 27
contraction, 46
correlation, 56, 61, 63, 72, 93
cost function, 30
covariance matrix

observation, 27, 32, 83, 95
parameter, 5, 61, 63, 72, 92, 100
prediction, 70, 75, 95
residual, 70

curvature matrix, 63, 64

D
data (see observation)
design, 4, 63, 73, 91
D-optimality, 72

E
eigenanalysis, 64, 72, 94
ellipsoid, 61, 64
E-optimality, 72
EOS, 80, 107, 112, 113, 115–117
error

discretization, 74
measurement, 7, 10, 23, 27, 83, 95
modeling, 7, 23, 74

propagation, 4
random, 24, 34
systematic, 11, 24, 34, 68, 98

expansion, 46

F
F-distribution, 59, 62, 100
finite differences, 16, 41, 86
Fisher information matrix, 63
Fisher Model Test, 59, 92, 100
forward run, 41, 50, 110, 113, 117
FOSM, 74

G
gas-pressure-pulse-decay, 9
Gauss, 15
Gauss-Markov, 33
Gauss-Newton method, 40, 42
goodness-of-fit, 59, 63, 72, 100
gradient, 40
grid search, 50, 54

H
Hessian matrix, 31, 40
Huber estimator, 36

I
IFS, 105, 113
include file, 106, 107
inconsistency, 25
initial

condition, 6
guess, 7, 10, 17, 81, 101

invdir, 117
inverse problem

ill-posed, 17, 31
well-posed, 30

iTOUGH2, 4, 80, 105
itough2, 107, 109, 114, 115
it2_tar, 111
it2help, 114, 121

J
Jacobian matrix, 4, 39–41, 46, 53, 55,

75, 79, 86, 88, 119
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K
Kashyap, 73, 100
kit, 107, 114, 119
Klinkenberg, 9
kurtosis, 69

L
least absolute residual, 36
least squares, 8, 11, 15, 32
Lahey®, 112, 113
Levenberg-Marquardt, 40, 44
Levenberg parameter, 44, 86
likelihood function, 32, 62, 100
loss function, 35, 95

M
m, 19
Makefile, 106, 111, 112
Marquardt parameter, 44, 86
maximum likelihood, 8, 30, 32, 62
maxsize.inc, 102, 106, 111, 112
median, 69
minimum

global, 30, 31
local, 7, 30, 48, 50

minimization algorithm, 8, 38, 86
modal matrix, 66, 94
model

alternative, 2, 72
calibration, 3
conceptual, 2, 3, 6, 9, 16, 68, 74, 109
development, 2, 3
forward, 6, 109
functional, 24, 59
identification, 3, 59, 72
inverse, 2, 5
output, 7
stochastic, 6, 23
structure, 6

model-related, 3, 16
moment analysis, 68
Monte Carlo, 4, 76

N
n, 16

Newton method, 41
noise (see random error)
nonuniqueness, 31
norm, 30

O
objective function, 8, 30, 54, 86, 97
observation

type, 7, 19, 60, 97
vector, 7, 20

optimality criteria, 72, 100
outlier, 25, 30, 34, 68, 71, 95
overparameterization, 55, 72

P
parameter

estimation, 4
fixed, 6, 16
input, 6, 16
selection, 52, 86
transformation, 6, 10, 16
vector, 16

parameterization, 16
parsimony, 73
path, 114
PC, 111, 112
perturbation method, 41
prior information, 6, 7, 10, 17, 19,

28, 81, 88, 93, 95
prista, 107, 114, 117
probability density function, 32, 61
PVM, 105, 112, 113

Q
quantile, 62, 66, 71, 95, 100

R
random variable, 27
redundancy, 70
reflexion, 46
regression analysis, 69, 98
regularization, 7, 17
reliability, 70
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residual, 22, 23
analysis, 68, 95
normalized, 71, 95, 97
plot, 96

robust estimator, 34

S
scaling

observations, 27
scatter plot, 68, 96
sensitivity

analysis, 4, 55, 88
coefficient, 41, 55, 63
criterion, 52, 86
matrix, 58, 88
measures, 56, 88, 90, 101, 117

simplex, 46
Simulated Annealing, 48
skewness, 68
standard deviation

conditional, 64, 93, 101
marginal, 64, 93, 101

steepest descent, 38, 44
step size, 51, 82, 86
stopping criteria, 50

T
t-distribution, 100
temperature, 48
TOUGH2, 4, 105, 109
tough2, 110, 114, 117

U
uncertainty

prediction, 5
propagation, 4, 16, 74

Unix shell script, 84, 107, 109, 111,
114–121

V
version, 80, 102, 107, 109, 111
vertex, 46

W
weight, 5–7, 23, 27, 95
window, 84
World Wide Web, 80

X
xvf, 111

Y
you (lucky), 100

Z
zonation, 16


